Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Biology (Basel) ; 13(3)2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38534458

ABSTRACT

The yellowtail kingfish is a highly active and fast-growing marine fish with promising potential for aquaculture. In this study, essential insights were gained into the energy economy of this species by heart rate and acceleration logging during a swim-fitness test and a subsequent stress challenge test. Oxygen consumption values of the 600-800 g fish, when swimming in the range of 0.2 up to 1 m·s-1, were high-between 550 and 800 mg·kg-1·h-1-and the heart rate values-up to 228 bpm-were even among the highest ever measured for fishes. When swimming at these increasing speeds, their heart rate increased from 126 up to 162 bpm, and acceleration increased from 11 up to 26 milli-g. When exposed to four sequential steps of increasing stress load, the decreasing peaks of acceleration (baseline values of 12 to peaks of 26, 19 and 15 milli-g) indicated anticipatory behavior, but the heart rate increases (110 up to 138-144 bpm) remained similar. During the fourth step, when fish were also chased, peaking values of 186 bpm and 44 milli-g were measured. Oxygen consumption and heart rate increased with swimming speed and was well reflected by increases in tail beat and head width frequencies. Only when swimming steadily near the optimal swimming speed were these parameters strongly correlated.

2.
Fish Physiol Biochem ; 40(4): 1201-12, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24493298

ABSTRACT

Aquaculture practices bring several stressful events to fish. Stressors not only activate the hypothalamus-pituitary-interrenal-axis, but also evoke cellular stress responses. Up-regulation of heat shock proteins (HSPs) is among the best studied mechanisms of the cellular stress response. An extract of the prickly pear cactus (Opuntia ficus indica), Pro-Tex, a soluble variant of TEX-OE(®), may induce expression of HSPs and reduce negative effects of cellular stress. Pro-Tex therefore is used to ameliorate conditions during stressful aquaculture-related practices. We tested Pro-Tex in zebrafish (Danio rerio), common carp (Cyprinus carpio L.) and yellowtail kingfish (Seriola lalandi) exposed to aquaculture-relevant stressors (thermal stress, net confinement, transport) and assessed its effects on stress physiology. Heat shock produced a mild increase in hsp70 mRNA expression in 5-day-old zebrafish larvae. Pro-Tex increased basal hsp70 mRNA expression, but decreased heat-shock-induced expression of hsp70 mRNA. In carp, Pro-Tex increased plasma cortisol and glucose levels, while it did not affect the mild stress response (increased plasma cortisol and glucose) to net confinement. In gills, and proximal and distal intestine, stress increased hsp70 mRNA expression; in the distal intestine, an additive enhancement of hsp70 mRNA expression by Pro-Tex was seen under stress. In yellowtail kingfish, Pro-Tex reduced the negative physiological effects of transport more efficiently than when fish were sedated with AQUI-S(®). Overall, our data indicate that Pro-Tex has protective effects under high levels of stress only. As Pro-Tex has potential for use in aquaculture, its functioning and impact on health and welfare of fish should be further studied.


Subject(s)
Carps/metabolism , Gene Expression Regulation/drug effects , Opuntia/chemistry , Perciformes/metabolism , Plant Extracts/pharmacology , Stress, Physiological/physiology , Zebrafish/metabolism , Animals , Aquaculture/methods , Blood Glucose/analysis , DNA Primers/genetics , Dose-Response Relationship, Drug , Heat-Shock Proteins/metabolism , Hydrocortisone/blood , Lactic Acid/blood , Larva/drug effects , Larva/metabolism , Real-Time Polymerase Chain Reaction , Statistics, Nonparametric , Stress, Physiological/drug effects , Temperature
3.
Fish Physiol Biochem ; 38(4): 1019-1028, 2012 Aug.
Article in English | MEDLINE | ID: mdl-22198161

ABSTRACT

Consumer awareness of the need to improve fish welfare is increasing. Electrostunning is a clean and potentially efficient procedure more and more used to provoke loss of consciousness prior to killing or slaughtering (reviewed by Van de Vis et al. in Aquac Res 34:211-220, 2003). Little is known how (powerful) electrical stimuli, which do not stun immediately, are perceived by fish. We investigated responses of hand-held Mozambique tilapia (Oreochromis mossambicus) to a standardized electric shock applied to the tailfin. The handling with the resulting unavoidable acute stress response was carefully controlled for. Fish responses were analyzed up to 24 h following the shock. Electric shock resulted in slightly higher levels in plasma cortisol, lactate, ionic levels, and osmolality, than handling alone. Plasma glucose had significantly increased 6 h after shock compared to handling, indicative of enhanced adrenergic activity. Mucus release from the gills, branchial Na⁺/K⁺ ATPase activity, and chloride cell migration and proliferation, parameters that will change with strong adrenergic activation, were not affected. Decreased swimming activity and delay in resumption of chafing behavior indicated a stronger and differential response toward the electric shock. Responses to handling lasted shorter compared to those to an electric shock. The differential and stronger responses to the electric shock suggest that fish perceived the shock potentially as painful.


Subject(s)
Handling, Psychological , Nociception , Stress, Physiological , Tilapia/physiology , Animals , Blood Glucose/metabolism , Case-Control Studies , Electric Stimulation , Hydrocortisone/blood , Ions/metabolism , Swimming
4.
Physiol Behav ; 101(4): 533-40, 2010 Nov 02.
Article in English | MEDLINE | ID: mdl-20705079

ABSTRACT

The fish welfare debate is intensifying. Consequently, more research is carried out to further our knowledge on fish welfare in aquaculture. We define here a series of key parameters to substantiate an acute response to a supposedly painful stimulus: a standardized tailfin clip. Ultrastructural analysis of common carp (Cyprinus carpio) tailfin indicates the presence of A-δ and C-type axons, which are typical for transmitting nociceptive signals in (higher) vertebrates. In Nile tilapia (Oreochromis niloticus), responses to a tailfin clip were studied and the unavoidable acute stress associated with the handling required for this procedure. A series of key parameters for further studies was defined. The responses seen in 'classical' stress parameters (e.g., changes in plasma cortisol, glucose and lactate levels) did not allow discrimination between the clipping procedure and the handling stress. However, three parameters indicated a differential, stronger response to the clip stimulus itself: first, swimming activity increased more and clipped fish spent more time in the light (in a tank where half the volume is covered by dark material); second, the gill's mucus cells released their content as observed 1h after the clip, and this response is transient (no longer observed at 6h post clipping). Third, branchial Na(+)/K(+)-ATPase activity assayed in vitro was not affected by the procedures, but a remarkable migration of Na(+)/K(+)-ATPase immunoreactive (chloride) cells into the lamellar epithelium was observed as of 6h post clipping. We conclude that the differential response to clipping supports that this is a painful procedure that evokes a transient specific physiological status.


Subject(s)
Animal Welfare , Behavior, Animal/physiology , Pain/metabolism , Stress, Physiological/physiology , Tail/surgery , Adaptation, Physiological , Animals , Aquaculture/methods , Carps , Motor Activity/physiology , Nociceptors/cytology , Tail/cytology , Tilapia
5.
Gen Comp Endocrinol ; 152(2-3): 243-51, 2007.
Article in English | MEDLINE | ID: mdl-17188690

ABSTRACT

A brief description is given of the discovery of PTHrP and the roles of the peptide in mammalian physiology. Next, the occurrence of PTHrP in the earliest vertebrates, sharks, skates and fishes, is reviewed and the calciotropic functions of PTHrP are addressed more specifically in fishes. Parathyroid hormone-related protein (PTHrP) is a hypercalcemic hormone in teleostean fishes, but also has para- and autocrine functions. After the isolation and identification of fish PTHrP and PTHrP receptors and the subsequent development of recombinant protein and a real-time quantitative PCR, a calciotropic role of PTHrP in fish physiology could be assessed. PTHrP influences calcium physiology via regulation of calcium mobilisation from internal sources (bone and scales) and via calcium uptake from the environment (water and diet). Continuous variations in the need for calcium and in the availability of environmental calcium require fast calciotropes to guarantee calcium balance, in which PTHrP is pivotal for the fish. PTHrP is essential in fish bone physiology, e.g. in mineralisation and calcium reabsorption from the scales. Moreover, PTHrP plays a role in vitellogenesis, cortisol production, regulation of renal Mrp2 activity and melatonin synthesis. The plethora of functions of PTHrP in fish concern endocrine, paracrine and autocrine (and possibly intracrine) functions; calciotropic actions of PTHrP at the organismal and cellular level are prominent in fish. The strong conservation of the pthrp gene in the vertebrate lineage and the N-terminal similarity of the coded proteins relates to the important role of PTHrP in calcium physiology that is of paramount importance to all physiological processes. Recent and ongoing studies will contribute to our rapidly expanding knowledge of the original physiological functions of PTHrP in teleost fish.


Subject(s)
Endocrine System/physiology , Fishes/physiology , Parathyroid Hormone-Related Protein/physiology , Animals
6.
J Exp Biol ; 209(Pt 18): 3550-7, 2006 Sep.
Article in English | MEDLINE | ID: mdl-16943495

ABSTRACT

Juvenile gilthead sea bream were exposed to diluted seawater (2.5 per thousand salinity; DSW) for 3 h or, in a second experiment, acclimated to DSW and fed a control or calcium-deficient diet for 30 days. Branchial Ca2+ influx, drinking rate and plasma calcium levels were assessed. Sea bream plasma parathyroid hormone related protein (sPTHrP) was measured, and mRNAs of pthrp, its main receptor, pth1r, and the calcium-sensing receptor (casr) were quantified in osmoregulatory tissues and the pituitary gland. When calcium is limited in water or diet, sea bream maintain calcium balance; however, both plasma Ca2+ and plasma sPTHrP concentrations were lower when calcium was restricted in both water and diet. Positive correlations between plasma sPTHrP and plasma Ca2+ (R2 = 0.30, N = 39, P < 0.05), and plasma sPTHrP and body mass of the fish (R2 = 0.37, N = 148, P < 0.001) were found. Immunoreactive sPTHrP was demonstrated in pituitary gland pars intermedia cells that border the pars nervosa and co-localises with somatolactin. In the pituitary gland, pthrp, pth1r and casr mRNAs were downregulated after both short- and long-term exposure to DSW. A correlation between pituitary gland pthrp mRNA expression and plasma Ca2+ (R2 = 0.71, N = 7, P < 0.01) was observed. In gill tissue, pthrp and pth1r mRNAs were significantly upregulated after 30 days exposure to DSW, whereas no effect was found for casr mRNA expression. We conclude that in water of low salinity, declining pituitary gland pthrp mRNA expression accompanied by constant plasma sPTHrP levels points to a reduced sPTHrP turnover and that sPTHrP, through paracrine interaction, is involved in the regulation of branchial calcium handling, independently of endocrine pituitary gland sPTHrP.


Subject(s)
Calcium/metabolism , Parathyroid Hormone-Related Protein/metabolism , Sea Bream/metabolism , Animals , Calcium/blood , Drinking , Gene Expression Regulation , Gills/metabolism , Homeostasis , Immunohistochemistry , Intestinal Mucosa/metabolism , Kidney/metabolism , Parathyroid Hormone-Related Protein/genetics , Pituitary Gland/metabolism , RNA, Messenger/metabolism , Receptor, Parathyroid Hormone, Type 1/genetics , Receptor, Parathyroid Hormone, Type 1/metabolism , Receptors, Calcium-Sensing/genetics , Receptors, Calcium-Sensing/metabolism , Sea Bream/physiology , Seawater/chemistry
7.
Gen Comp Endocrinol ; 149(2): 159-65, 2006 Nov.
Article in English | MEDLINE | ID: mdl-16839552

ABSTRACT

In fish, vitellogenin is an important nutritional precursor protein produced solely in the liver and released into the blood where it binds calcium. In the gilthead sea bream (Sparus auratus) 17beta-Estradiol (E2) plays an important role in the synthesis of vitellogenin, but also the pituitary hormones prolactin (PRL) and growth hormone (GH) can stimulate vitellogenin induction in fish. Considering the emerging involvement of PTHrP in fish calcium metabolism and the importance of calcium regulation in reproduction, we investigated the possible role of PTHrP in vitellogenesis. E2-naïve and E2-primed sea bream hepatocytes were used in an in vitro primary hepatocyte culture and stimulated with a recombinant sea bream PTHrP (sbPTHrP) to establish the contribution of sbPTHrP alone or in combination with E2 to the regulation of hepatic vitellogenin synthesis. Hepatocytes stimulated solely with sbPTHrP were not affected in their vitellogenesis. However, in hepatocytes stimulated with E2 in combination with sbPTHrP a higher vitellogenin production was seen than with E2 alone. It is concluded that sbPTHrP has a potentiating effect on estradiol stimulation of vitellogenin production by sea bream hepatocytes. The sea bream provides a unique model where vitellogenesis regulation can be studied on E2-naïve liver cells, both in vivo and in vitro.


Subject(s)
Estradiol/pharmacology , Parathyroid Hormone-Related Protein/pharmacology , Sea Bream/physiology , Vitellogenesis/drug effects , Vitellogenins/biosynthesis , Animals , Calcium/metabolism , Cells, Cultured , Drug Implants , Drug Synergism , Estradiol/blood , Female , Hepatocytes/cytology , Hepatocytes/drug effects , Hepatocytes/metabolism , Male , Recombinant Proteins/pharmacology , Vitellogenesis/physiology
8.
J Exp Biol ; 207(Pt 23): 4077-84, 2004 Nov.
Article in English | MEDLINE | ID: mdl-15498953

ABSTRACT

Juvenile gilthead sea bream (Sparus auratus L.; 10-40 g body mass) were acclimatized in the laboratory to full strength (34 per thousand) or dilute (2.5 per thousand) seawater and fed normal, calcium-sufficient or calcium-deficient diet for nine weeks. Mean growth rate, whole-body calcium and phosphorus content and accumulation rates were determined, as well as plasma levels of ionic and total calcium, cortisol and parathyroid hormone related protein (PTHrP; a hypercalcemic hormone in fish). When confronted with limited calcium access (low salinity and calcium-deficient diet), sea bream show growth arrest. Both plasma cortisol and PTHrP increase when calcium is limited in water or diet, and a positive relationship was found between plasma PTHrP and plasma ionic calcium (R(2)=0.29, N=18, P<0.05). Furthermore, a strong correlation was found between net calcium and phosphorus accumulation (R(2)=0.92, N=16, P<0.01) and between body mass and whole-body calcium (R(2)=0.84, N=25, P<0.01) and phosphorus (R(2)=0.88, N=24, P<0.01) content. Phosphorus accumulation is strongly calcium dependent, as phosphorus accumulation decreases in parallel to calcium accumulation when the diet is calcium deficient but phosphorus sufficient. We conclude that PTHrP and cortisol are involved in the regulation of the hydromineral balance of these fish, with growth-related calcium accumulation as an important target.


Subject(s)
Calcium, Dietary/metabolism , Phosphorus/metabolism , Sea Bream/metabolism , Seawater/analysis , Analysis of Variance , Animals , Calcium/blood , Calcium/pharmacokinetics , Hydrocortisone/blood , Minerals/metabolism , Parathyroid Hormone-Related Protein/blood , Phosphorus/pharmacokinetics , Sea Bream/growth & development , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...