Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Mater ; 15(2): 211-6, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26461447

ABSTRACT

One of the challenges for achieving efficient exciton transport in solar energy conversion systems is precise structural control of the light-harvesting building blocks. Here, we create a tunable material consisting of a connected chromophore network on an ordered biological virus template. Using genetic engineering, we establish a link between the inter-chromophoric distances and emerging transport properties. The combination of spectroscopy measurements and dynamic modelling enables us to elucidate quantum coherent and classical incoherent energy transport at room temperature. Through genetic modifications, we obtain a significant enhancement of exciton diffusion length of about 68% in an intermediate quantum-classical regime.


Subject(s)
Energy Transfer , Genetic Engineering , Computer Simulation , Electrochemistry , Materials Testing , Models, Theoretical , Spectrum Analysis , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...