Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Skeletal Radiol ; 2024 May 16.
Article in English | MEDLINE | ID: mdl-38755335

ABSTRACT

OBJECTIVE: Osteoporosis and falls are both prevalent in the elderly, and CT brain (CTB) is frequently performed post head-strike. We aim to validate the relationship between frontal bone density (Hounsfield unit) from routine CTB and bone mineral density from dual-energy X-ray absorptiometry (DEXA) scan for opportunistic osteoporosis screening. MATERIALS AND METHODS: Patients who had a non-contrast CTB followed by a DEXA scan in the subsequent year were included in this multi-center retrospective study. The relationship between frontal bone density on CT and femoral neck T-score on DEXA was examined using ANOVA, Pearson's correlation, and receiver operating curve (ROC) analysis. Sensitivity, specificity, negative and positive predictive values, and area under the curve (AUC) were calculated. RESULTS: Three hundred twenty-six patients (205 females and 121 males) were analyzed. ANOVA analysis showed that frontal bone density was lower in patients with DEXA-defined osteoporosis (p < 0.001), while Pearson's correlation analysis demonstrated a fair correlation with femoral neck T-score (r = 0.3, p < 0.001). On subgroup analysis, these were true in females but not in males. On ROC analysis, frontal bone density weakly predicted osteoporosis (AUC 0.6, 95% CI 0.5-0.7) with no optimal threshold identified. HU < 610 was highly specific (87.5%) but poorly sensitive (18.9%). HU > 1200 in females had a strong negative predictive value for osteoporosis (92.6%, 95% CI 87.1-98.1%). CONCLUSION: Frontal bone density from routine CTB is significantly different between females with and without osteoporosis, but not between males. However, frontal bone density was a weak predictor for DEXA-defined osteoporosis. Further research is required to determine the role of CTB in opportunistic osteoporosis screening.

2.
Neurointervention ; 16(3): 260-266, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34689457

ABSTRACT

PURPOSE: Carotid artery stenting (CAS) is an established treatment for symptomatic carotid artery stenosis as an alternative to carotid endarterectomy. A variety of techniques and devices have been devised to minimise periprocedural stroke risk using either proximal or distal embolic protection. This study presents a method of embolic protection during CAS-the CaRotid Artery Filtering Technique (CRAFT). MATERIALS AND METHODS: The CRAFT technique employs aspects of both proximal and distal embolic protection. The CASPER RX stent (MicroVention, Tustin, CA, USA), which is a double-layered, closed-cell, micromesh nitinol stent, is deployed across the carotid artery stenosis with the assistance of a FlowGate balloon guide catheter (Stryker Neurovascular, Fremont, CA, USA). The partially deployed stent acts as a distal filter while the balloon guide is deflated midway during stent deployment to prevent distal plaque embolisation, followed by completion of stent deployment and angioplasty. RESULTS: A total of 94 patients underwent CAS using the CRAFT technique between June 2016 and March 2021. Successful stent deployment was achieved in all patients. Preliminary results demonstrated acute stent occlusion in 6 patients (6.4%) and distal embolic stroke in 5 patients (5.3%). The median procedural fluoroscopy time was 34 minutes with an interquartile range of 22 to 55 minutes. CONCLUSION: The CRAFT technique of CAS presented by this study can be applied in the treatment of symptomatic carotid artery stenosis in both emergency and elective procedure settings with a high technical success and low distal embolic stroke risk.

3.
J Med Imaging Radiat Oncol ; 64(2): 293-302, 2020 Apr.
Article in English | MEDLINE | ID: mdl-32174019

ABSTRACT

Stereotactic body radiotherapy has emerged as one of the preferred treatments for patients with spine metastases, with the potential for long-term control from lesion irradiation. Post-treatment vertebral compression fractures are a known complication of this therapy, contributing to worsening pain and reduced quality of life, sometimes requiring surgical intervention. This review explores the current knowledge of post-radiotherapy fractures, in terms of the rates and associated predictive factors. A search of databases including Medline, Embase and the Cochrane Library was conducted using keywords such as 'vertebral compression fracture', 'stereotactic body radiotherapy' and 'spine metastases'. The search was limited to published studies up to March 2019, reporting clinical outcomes including both the post-treatment fracture rate and statistical identification of associated risk factors. Rates of post-treatment fractures ranged from 4 to 39%. A variety of factors were found to increase the risk, including the appearance of lytic vertebral disease, degree of pre-existing compression, spinal malalignment, increased dose per fraction and a Spinal Instability Neoplastic Score >6. This knowledge can enable clinicians to counsel patients when considering management options for spine metastases, maintaining the balance between local tumour control and the risk of subsequent fracture.


Subject(s)
Fractures, Compression/etiology , Radiosurgery/adverse effects , Spinal Fractures/etiology , Spinal Neoplasms/radiotherapy , Spinal Neoplasms/secondary , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...