Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
medRxiv ; 2024 Jan 22.
Article in English | MEDLINE | ID: mdl-38370763

ABSTRACT

Importance: Wrist-worn activity monitors provide biomarkers of health by non-obtrusively measuring the timing and amount of rest and physical activity (rest-activity rhythms, RARs). The morphology and robustness of RARs vary by age, gender, and sociodemographic factors, and are perturbed in various chronic illnesses. However, these are cross-sectionally derived associations from recordings lasting 4-10 days, providing little insights into how RARs vary with time. Objective: To describe how RAR parameters can vary or evolve with time (~months). Design Setting and Participants: 48 very long actograms ("VLAs", ≥90 days in duration) were identified from subjects enrolled in the STAGES (Stanford Technology, Analytics and Genomics in Sleep) study, a prospective cross-sectional, multi-site assessment of individuals > 13 years of age that required diagnostic polysomnography to address a sleep complaint. A single 3-year long VLA (author GD) is also described. Exposures/Intervention: None planned. Main Outcomes and Measures: For each VLA, we assessed the following parameters in 14-day windows: circadian/ultradian spectrum, pseudo-F statistic ("F"), cosinor amplitude, intradaily variability, interdaily stability, acrophase and estimates of "sleep" and non-wearing. Results: Included STAGES subjects (n = 48, 30 female) had a median age of 51, BMI of 29.4kg/m2, Epworth Sleepiness Scale score (ESS) of 10/24 and a median recording duration of 120 days. We observed marked within-subject undulations in all six RAR parameters, with many subjects displaying ultradian rhythms of activity that waxed and waned in intensity. When appraised at the group level (nomothetic), averaged RAR parameters remained remarkably stable over a ~4 month recording period. Cohort-level deficits in average RAR robustness associated with unemployment or high BMI (>29.4) also remained stable over time. Conclusions and Relevance: Through an exemplary set of months-long wrist actigraphy recordings, this study quantitatively depicts the longitudinal stability and dynamic range of human rest-activity rhythms. We propose that continuous and long-term actigraphy may have broad potential as a holistic, transdiagnostic and ecologically valid monitoring biomarker of changes in chronobiological health. Prospective recordings from willing subjects will be necessary to precisely define contexts of use.

2.
Epilepsia ; 64(6): 1640-1652, 2023 06.
Article in English | MEDLINE | ID: mdl-37029747

ABSTRACT

OBJECTIVES: Disability in patients with epilepsy (PWEs) is multifactorial: beyond seizure frequency/severity, PWEs are prone to a range of neuropsychiatric, cognitive, and somatic comorbidities that significantly affect quality of life. Here, we explored how variations in seizure severity and the burden of self-reported somatic/neuropsychiatric symptoms correlate with disruptions to 24 h activity patterns (rest-activity rhythms [RARs]), determined through wrist accelerometry/actigraphy. METHODS: Multiday wrist-actigraphy recordings were obtained from 59 adult patients with focal epilepsy (44% male, ages 18-72), who contemporaneously responded to validated psychometric instruments to measure anxiety, depression, sleepiness, and somatic symptoms. We conducted a similar in silico psychometric-actigraphic correlation in a publicly available data set of 1747 Hispanic subjects (35% male, ages 18-65) from the Study of Latinos (SOL) Sueño Ancillary Study. RARs were analyzed via a sigmoidally-transformed cosine model (quantifying amplitude, steepness, acrophase, and robustness) and nonparametric measures to estimate RAR stability, fragmentation, and sleep. RESULTS: Compared with matched SOL subjects, RARs from PWE subjects featured a significantly lower amplitude, a wider rest phase, and significantly more total daily sleep. Within PWEs, similar RAR distortions were associated with seizure intractability and/or anticonvulsant polytherapy, whereas high anxiety, depression, and somatic symptom scores were associated with lower RAR robustness and acrophase delay. We applied the SOL data set to train logistic regression models to dichotomously classify subjective anxiety, depression, and sleepiness symptoms using demographic and RAR parameters. When tested on PWEs, these models predicted prevalent anxiety and depression symptom burden (accuracy ~70%) but failed to predict subjective sleepiness. SIGNIFICANCE: Together these results demonstrate that RAR features may encode prevalent depression and anxiety symptoms in patients with focal epilepsy, potentially offering wearable-derived endpoints to adjunct clinical care and drug/device trials. With larger PWE-specific actigraphic-psychometric data sets, we may identify RAR signatures that may more precisely correlate with varying seizure frequency, the burden of anticonvulsant therapy, and prevalent mood/anxiety symptoms.


Subject(s)
Epilepsies, Partial , Epilepsy , Humans , Male , Adult , Female , Actigraphy , Anticonvulsants , Quality of Life , Sleepiness , Epilepsy/psychology , Seizures , Epilepsies, Partial/diagnostic imaging
3.
Sci Rep ; 12(1): 12801, 2022 07 27.
Article in English | MEDLINE | ID: mdl-35896608

ABSTRACT

In many childhood-onset genetic epilepsies, seizures are accompanied by neurobehavioral impairments and motor disability. In the Stargazer mutant mouse, genetic disruptions of Cacng2 result in absence-like spike-wave seizures, cerebellar gait ataxia and vestibular dysfunction, which limit traditional approaches to behavioral phenotyping. Here, we combine videotracking and instrumented home-cage monitoring to resolve the neurobehavioral facets of the murine Stargazer syndrome. We find that despite their gait ataxia, stargazer mutants display horizontal hyperactivity and variable rates of repetitive circling behavior. While feeding rhythms, circadian or ultradian oscillations in activity are unchanged, mutants exhibit fragmented bouts of behaviorally defined "sleep", atypical licking dynamics and lowered sucrose preference. Mutants also display an attenuated response to visual and auditory home-cage perturbations, together with profound reductions in voluntary wheel-running. Our results reveal that the seizures and ataxia of Stargazer mutants occur in the context of a more pervasive behavioral syndrome with elements of encephalopathy, repetitive behavior and anhedonia. These findings expand our understanding of the function of Cacng2.


Subject(s)
Cerebellar Ataxia , Disabled Persons , Epilepsy, Absence , Motor Disorders , Animals , Ataxia/genetics , Cerebellar Ataxia/genetics , Humans , Mice , Seizures/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...