Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
Add more filters










Publication year range
1.
J Neurochem ; 94(1): 37-44, 2005 Jul.
Article in English | MEDLINE | ID: mdl-15953347

ABSTRACT

Methyllycaconitine (MLA) is reported to be a selective antagonist for the nicotinic acetylcholine receptor alpha7 subtype and has been found in animal behavioral studies to reduce nicotine self-administration and attenuate nicotine withdrawal symptoms. While MLA crosses the blood-brain barrier (BBB), no studies have assessed brain uptake in animals subjected to chronic nicotine exposure. Given that chronic nicotine administration has been reported to alter BBB parameters that may affect the kinetic BBB passage of MLA, we evaluated MLA brain uptake in naive and S-(-)nicotine-exposed rats (4.5 mg/kg/day for 28 days; osmotic minipumps) using in situ rat brain perfusions. Our results demonstrate that in situ(3)H-MLA brain uptake rates in naive animals approximate to intravenous kinetic data (K(in), 3.24 +/- 0.71 x 10(-4) mL/s/g). However, 28-day nicotine exposure diminished (3)H-MLA brain uptake by approximately 60% (K(in), 1.29 +/- 0.4 x 10(-4) mL/s/g). This reduction was not related to nicotine-induced (3)H-MLA brain efflux or BBB transport alterations. Similar experiments also demonstrated that the passive permeation of (14)C-thiourea was diminished approximately 24% after chronic nicotine exposure. Therefore, it appears that chronic nicotine exposure diminishes the blood-brain passive diffusion of compounds with very low extraction rates (i.e. permeability-limited compounds). These findings imply that the pharmacokinetics of neuropharmaceutical agents that are permeability limited may need to be re-evaluated in individuals exposed to nicotine.


Subject(s)
Aconitine/analogs & derivatives , Aconitine/metabolism , Blood-Brain Barrier/drug effects , Brain/drug effects , Brain/metabolism , Capillary Permeability/drug effects , Nicotine/administration & dosage , Aconitine/antagonists & inhibitors , Animals , Blood-Brain Barrier/metabolism , Capillary Permeability/physiology , Drug Administration Schedule , Infusion Pumps, Implantable , Male , Nicotine/pharmacokinetics , Rats , Rats, Inbred F344
2.
J Pharmacol Exp Ther ; 314(2): 636-42, 2005 Aug.
Article in English | MEDLINE | ID: mdl-15845856

ABSTRACT

Blood-brain barrier (BBB) nicotine transfer has been well documented in view of the fact that this alkaloid is a cerebral blood flow marker. However, limited data are available that describe BBB penetration of the major tobacco alkaloids after chronic nicotine exposure. This question needs to be addressed, given long-term nicotine exposure alters both BBB function and morphology. In contrast to nicotine, it has been reported that cotinine (the major nicotine metabolite) does not penetrate the BBB, yet cotinine brain distribution has been well documented after nicotine exposure. Surprisingly, therefore, the literature indirectly suggests that central nervous system cotinine distribution occurs secondarily to nicotine brain metabolism. The aims of the current report are to define BBB transfer of nicotine and cotinine in naive and nicotine-exposed animals. Using an in situ brain perfusion model, we assessed the BBB uptake of [3H]nicotine and [3H]cotinine in naive animals and in animals exposed chronically to S-(-)nicotine (4.5 mg/kg/day) through osmotic minipump infusion. Our data demonstrate that 1) [3H]nicotine BBB uptake is not altered in the in situ perfusion model after chronic nicotine exposure, 2) [3H]cotinine penetrates the BBB, and 3) similar to [3H]nicotine, [3H]cotinine BBB transfer is not altered by chronic nicotine exposure. To our knowledge, this is the first report detailing the uptake of nicotine and cotinine after chronic nicotine exposure and quantifying the rate of BBB penetration by cotinine.


Subject(s)
Brain/metabolism , Cotinine/metabolism , Nicotine/pharmacokinetics , Nicotinic Agonists/pharmacokinetics , Animals , Aryl Hydrocarbon Hydroxylases/metabolism , Blood-Brain Barrier , Cerebrovascular Circulation/physiology , Cotinine/blood , Cytochrome P-450 CYP2A6 , Cytochrome P-450 CYP2B1/metabolism , In Vitro Techniques , Mixed Function Oxygenases/metabolism , Nicotine/blood , Nicotine/pharmacology , Nicotinic Agonists/blood , Nicotinic Agonists/pharmacology , Perfusion , Rats , Rats, Inbred F344
3.
Drug Dev Ind Pharm ; 28(7): 773-81, 2002 Aug.
Article in English | MEDLINE | ID: mdl-12236063

ABSTRACT

UNLABELLED: Choline transport is characterized by sodium-dependent high-affinity, sodium-independent low-affinity, and sodium-independent blood-brain barrier transport mechanisms. Each defined mechanism has specific characteristics with regard to affinity for choline, transport capacity, and inhibition by hemicholinium. The purpose of this study is to determine the characteristics of choline transport across Caco-2 monolayers. METHODS: Choline transport across Caco-2 cell monolayers was determined in both the apical to basal direction and the opposite direction. Further, the determination of calcium dependence and specific inhibitors was made. Determination of the apparent permeability of choline was calculated by established methods. RESULTS: The apical to basal Caco-2 permeability coefficient is 11.11 +/- 0.33 x 10(-6) cm/sec with 21.3% of the choline associating with the cells. Meanwhile the basal to apical value is approximately 50% less (5.55 +/- 0.14 x 10(-6) cm/sec), suggesting an active apical to basal transport mechanism. Choline transport in this system was inhibited by nifedipine (82%), verapamil (80%), EGTA (36%), and cyclosporin (15%). CONCLUSIONS: Choline transport across Caco-2 cells is demonstrated to be active and both pH- and Ca(2+)-dependent. Furthermore, choline transport across Caco-2 monolayers has unique characteristics when compared to traditional choline transport models.


Subject(s)
Choline/metabolism , Biological Transport , Caco-2 Cells , Drug Interactions , Humans , Hydrogen-Ion Concentration , Membrane Transport Proteins/drug effects , Nifedipine/pharmacology , Verapamil/pharmacology
4.
Peptides ; 21(4): 491-501, 2000 Apr.
Article in English | MEDLINE | ID: mdl-10822104

ABSTRACT

Ziconotide is a selective peptide antagonist of the N-type calcium channel currently in clinical trials for analgesia. Ziconotide reached a maximal brain concentration of between 0.003 and 0.006% of the injected material per gram of tissue at 3-20 min after i.v. injection, and this decayed to below 0.001%/g after 2 h. The structurally distinct conopeptide SNX-185 (synthetic TVIA) was considerably more persistent in brain after i.v. administration, with 0.0035% of the injected material present at 2-4 h after i.v. injection, and 0.0015% present at 24 h. Similar results (i.e. greater persistence of SNX-185) were obtained when the peptides were perfused through in vivo dialysis probes implanted into the hippocampus. Image analysis and serial sectioning showed that diffusion of Ziconotide in the extracellular fluid around the dialysis probe was minimal, with the peptide located within 1 mm of the probe after 2 h. In vitro diffusion through cultured bovine brain microvessel endothelial cells (BBMEC) verified that a close structural analog of Ziconotide (SNX-194) passed through this blood-brain barrier (BBB) model as expected for peptides of similar physical properties (permeability coefficient of 6.5 x 10(-4) cm/g). Passage from blood to brain was also verified by in situ perfusion through the carotid artery. A statistically greater amount of radioactivity was found to cross the BBB after perfusion of radioiodinated Ziconotide compared to [14C]inulin. Capillary depletion experiments and HPLC analysis defined the brain location and stability.


Subject(s)
Brain/metabolism , Calcium Channel Blockers/pharmacokinetics , Neuroprotective Agents/pharmacokinetics , omega-Conotoxins/pharmacokinetics , Amino Acid Sequence , Animals , Biological Availability , Blood-Brain Barrier , Calcium Channel Blockers/blood , Cattle , Chromatography, High Pressure Liquid , Diffusion , Endothelium, Vascular/metabolism , Extracellular Space/metabolism , In Vitro Techniques , Injections, Intravenous , Microdialysis , Molecular Sequence Data , Neuroprotective Agents/blood , Perfusion , Rats , Rats, Sprague-Dawley , omega-Conotoxins/blood
5.
Peptides ; 20(10): 1229-38, 1999.
Article in English | MEDLINE | ID: mdl-10573295

ABSTRACT

The utility of a drug depends on its ability to reach appropriate receptors at the target tissue and remain metabolically stable to produce the desired effect. To improve central nervous system entry of the opioid analgesic [D-Pen2, L-Pen5, Phe6] Enkephalin (DPLPE-Phe), our research group synthesized analogs that had chloro, bromo, fluoro, and iodo halogens on the para positions of the phenylalanine-4 residue. This study reports on investigation of the effect of halogenation on stability, lipophilicity, and in vitro blood-brain barrier permeability of a novel enkephalin analog DPLPE-Phe. The stability of each halogenated DPLPE-Phe analog as well as the amidated and nonamidated parent peptide was tested in plasma and brain. All peptides tested had a half-time disappearance >300 min except for DPLPE-Phe-NH2, which was found to have a half-life of 30 min in plasma. Octanol/saline distribution studies indicated addition of halogens to DPLPE-Phe-OH significantly increased lipophilicity except for p-[F-Phe4]DPLPE-Phe-OH. p-[Cl-Phe4]DPLPE-Phe-OH exhibited the most pronounced increase in lipophilicity. Para-bromo and para-chloro halogen additions significantly enhanced in vitro blood-brain barrier permeability, providing evidence for improved delivery to the central nervous system.


Subject(s)
Blood-Brain Barrier/physiology , Enkephalin, D-Penicillamine (2,5)-/analogs & derivatives , Enkephalins/pharmacokinetics , Halogens/metabolism , Peptides/pharmacokinetics , Animals , Cattle , Enkephalin, D-Penicillamine (2,5)-/chemistry , Enkephalin, D-Penicillamine (2,5)-/pharmacokinetics , Mice , Octanols/metabolism , Permeability , Sodium Chloride/metabolism
6.
Brain Res ; 842(2): 277-86, 1999 Sep 25.
Article in English | MEDLINE | ID: mdl-10526124

ABSTRACT

The blood-brain barrier (BBB) plays a crucial role in protecting the central nervous system (CNS) from any changes in homeostasis brought about by pathological conditions. Cerebrovascular permeability is an important factor in the development of cerebral edema following stroke [M. Plateel, E. Teissier, R. Cecchelli, Hypoxia, dramatically increases the nonspecific transport of blood-borne proteins to the brain. J. Neurochem. 68 (1997) 874-877] and any changes in its function can have detrimental neurological consequences. Recently, research has shown that an in vitro model of the BBB is sensitive to short exposures of hypoxia/aglycemia and that changes in endothelial cell calcium flux may be responsible for structural and functional variations in the BBB during ischemic stress [T.J. Abbruscato, T.P. Davis, Combination of hypoxia/aglycemia compromises in vitro BBB. J. Pharmacol. Exp. Ther. 289 (1999) 668-675]. Present experiments investigated bovine brain microvessel endothelial cell (BBMEC) expression of a Ca(2+)-dependent cell-cell adhesion molecule, E-cadherin, which has been shown to be important for blood-brain barrier function [D. Pal, K.L. Audus, T.J. Siahaan, Modulation of cellular adhesion in bovine brain microvessel endothelial cells by a decapeptide. Brain Research 747 (1997) 103-113]. Since it is believed that astrocyte-endothelial cell interaction is crucial for maintenance of in vivo BBB characteristics, we have attempted to optimize our isolation and culturing techniques to produce a reliable, in vitro model of the BBB that is suitable to study pathological conditions. Immunofluoresence experiments showed positive staining for E-cadherin, yet failed to show any change in cellular distribution of E-cadherin upon hypoxic/aglycemic exposure. In addition, culturing BBMECs with C6 conditioned medium (CM) had no effect on the localization of E-cadherin. Western blotting experiments showed that BBMECs express E-cadherin and this protein is decreased in a time dependent manner after various hypoxic/aglycemic exposures when endothelial cells are cultured alone or with C6 astrogliomas grown on a separate culture surface. When C6 astrocytes are grown directly opposed to endothelial cells, with a porous membrane between, we observed a slight attenuation in the decreased BBMEC expression of E-Cadherin after hypoxia/aglycemia exposure. This work has shown that the mammalian brain endothelial/astrocyte co-culture system is a useful model for studies of pathological conditions where BBB characteristics are maintained.


Subject(s)
Astrocytes/physiology , Cadherins/genetics , Cell Hypoxia/physiology , Cerebrovascular Circulation , Endothelium, Vascular/physiology , Microcirculation/physiology , Animals , Blood-Brain Barrier , Blotting, Western , Cadherins/biosynthesis , Cadherins/isolation & purification , Cattle , Cell Communication , Cells, Cultured , Coculture Techniques , Gene Expression Regulation , Glucose/pharmacology
7.
J Pharmacol Exp Ther ; 289(2): 668-75, 1999 May.
Article in English | MEDLINE | ID: mdl-10215638

ABSTRACT

Increased cerebrovascular permeability is an important factor in the development of cerebral edema after stroke, implicating the blood-brain barrier (BBB) in the pathology of stroke. Present investigations modeled stroke at the level of the cerebral capillary endothelium by analyzing BBB permeability changes to the membrane-impermeant marker [14C]sucrose after hypoxia/aglycemia. Under hypoxia alone, long exposures (48 h) were necessary to result in a significant increase in permeability of bovine brain microvessel endothelial cells to [14C]sucrose. Hypoxia/aglycemia exposures resulted in a much shorter time (i.e., 1-3 h) required for a corresponding increase in permeability to [14C]sucrose. Statistically significant changes in basal permeability were observed between 3 and 6 h of hypoxia/aglycemia; however, 6 h of aglycemia alone had no significant effect on BBB permeability. Both rat astroglioma (C6) cells and C6 conditioned medium showed no improvements in barrier function measured by transendothelial cell resistance or permeability to [14C]sucrose. Changes in endothelial cell calcium flux may be responsible for the permeability change observed after both 48 h of hypoxia and 6 h of hypoxia/aglycemia because nifedipine (10 and 100 nM) and SKF 96365 (100 nM) decreased the permeability change. Immunocytochemical studies also revealed a change in the distribution of endothelial cell F-actin. This study provides evidence that the BBB is sensitive to short exposures of hypoxia/aglycemia and that changes in endothelial cell calcium flux may be responsible for structural and functional variations in the BBB during ischemic stress.


Subject(s)
Blood-Brain Barrier , Glucose/deficiency , Actins/metabolism , Animals , Calcium Channel Blockers/pharmacology , Capillary Permeability , Cattle , Cell Hypoxia , Cerebral Cortex/blood supply , Coculture Techniques , Culture Media, Conditioned , Endothelium, Vascular/cytology , Endothelium, Vascular/physiology , Enkephalin, D-Penicillamine (2,5)- , Enkephalins/metabolism , Imidazoles/pharmacology , Insulin/metabolism , Nifedipine/pharmacology , Receptors, Opioid, delta/agonists , Sucrose/metabolism
8.
J Pharm Sci ; 87(11): 1433-9, 1998 Nov.
Article in English | MEDLINE | ID: mdl-9811502

ABSTRACT

Peptide hormones and neurotransmitters play crucial roles in the maintenance of physiological function at both the cellular and organ level. Although peptide neuropharmaceuticals have enormous potential in the treatment of disease states, the blood-brain barrier (BBB) generally prevents the entry of peptides into the brain either by enzyme degradation or by specific properties of the BBB. Peptides that act at opioid receptors are currently being designed for analgesia and to reduce the unwanted side effects associated with morphine, such as addiction and inhibition of gastric motility. It has been the focus of our group to produce stabile peptide analogues of Met-enkephalin, that lead to analgesia without side effects. In this paper we present the methodologies that have been used to elucidate the transport mechanisms of three peptides across the BBB. Using a primary endothelial cell culture model of the BBB, in situ perfusion, and kinetic analysis we show that D-Phe-Cys-Tyr-D-Trp-Arg-Thr-Pen-Thr-NH2 (CTAP) crosses the BBB via diffusion, [D-penicillamine2,5]enkephalin uses a combination of diffusion and a saturable transport mechanism, and biphalin ([Tyr-D-Ala-Gly-Phe-NH]2) uses diffusion and the large neutral amino acid carrier. Understanding BBB transport mechanisms for peptides will aid in the rational design of peptides targeted to the brain.


Subject(s)
Blood-Brain Barrier/physiology , Central Nervous System/metabolism , Enkephalins/metabolism , Animals , Cattle , Cells, Cultured , Enkephalin, D-Penicillamine (2,5)- , Female , In Vitro Techniques , Peptide Fragments , Peptides/metabolism , Rats , Rats, Sprague-Dawley , Somatostatin
9.
J Neurochem ; 69(3): 1236-45, 1997 Sep.
Article in English | MEDLINE | ID: mdl-9282948

ABSTRACT

Biphalin [(Tyr-D-Ala-Gly-Phe-NH)2] is a bivalent, opioid peptide containing two pharmacophores linked by a hydrazine bridge. When administered intracerebroventricularly, it has been shown to be more potent than morphine and etorphine at eliciting antinociception. Biphalin has also been shown to cross both the blood-brain and blood-cerebrospinal fluid barriers. To understand the basis of biphalin's potency, regional brain and spinal cord distribution studies with [125I-Tyr1]biphalin were performed 5, 20, and 40 min after intravenous bolus injections. A statistically greater amount of [125I-Tyr1]biphalin was detected in the nucleus accumbens compared with other brain regions (p < 0.05). This correlates with the high density of delta- and mu-opioid receptor mRNA and binding sites shown to be expressed in the nucleus accumbens. Also, a statistically greater amount of [125I-Tyr1] biphalin was detected in two other circumventricular organs, the choroid plexus and pituitary, when compared with other brain regions. These studies provide evidence that biphalin can reach not only brain sites, but also spinal sites to elicit antinociception. The overall CNS distribution of [125I-Tyr1]biphalin was decreased with naloxone, D-Phe-Cys-Tyr-D-Trp-Arg-Thr-Pen-Thr-NH2, or naltrindole pretreatment, showing that biphalin detected in the brain and spinal cord is binding to delta- and mu-opioid receptors. Additional in situ brain perfusion experiments identified a saturable component contributing to CNS entry of [125I-Tyr1]biphalin, which could be described by Michaelis-Menten kinetics with a Km of 2.6 +/- 4.8 microM, Vmax of 14.6 +/- 2.89 pmol(-1) x min(-1) x g(-1), and Kd of 0.568 +/- 0.157 microl x min(-1) x g(-1). Brain entry of [125I-Tyr1]biphalin was sensitive to 2-aminobicyclo[2.2.1]heptane-2-carboxylic acid and L-phenylalanine, suggesting use of the large neutral amino acid carrier. This work provides evidence that biphalin is a promising, potent analgesic that has a unique mechanism for reaching both spinal and supraspinal opioid receptor sites.


Subject(s)
Analgesics/pharmacokinetics , Brain/metabolism , Enkephalins/pharmacokinetics , Receptors, Opioid, delta/metabolism , Receptors, Opioid, mu/metabolism , Spinal Cord/metabolism , Animals , Binding, Competitive , Iodine Radioisotopes , Kinetics , Models, Chemical , Naloxone/pharmacology , Naltrexone/analogs & derivatives , Naltrexone/pharmacology , Narcotic Antagonists/pharmacology , Organ Specificity , Peptides/pharmacology , Radioisotope Dilution Technique , Rats , Tissue Distribution
10.
J Pharmacol Exp Ther ; 281(2): 817-25, 1997 May.
Article in English | MEDLINE | ID: mdl-9152390

ABSTRACT

[D-Ala2]deltorphins are enzymatically stable, amphibian heptapeptides that have a higher affinity and selectivity for delta-opioid receptors than any endogenous mammalian compound known. This study investigated the in vitro blood-brain barrier permeability, using primary bovine brain microvessel endothelium culture, and the resistance to enzymatic degradation, in mouse 15% brain membrane homogenates and 100% plasma, of [D-Ala2]deltorphin I, [D-Ala2]deltorphin II and several analogues. Derivatives were designed with the addition of N-terminal neutral and basic amino acids or with alterations of the amino acids present within the deltorphin sequences. The results indicated that the N-terminal sequence and the amino acids in position 4 and 5 are critical to deltorphin analogue BBB permeability and biological stability, i.e., t 1/2 brain; 4.8 hr- [D-Ala2]deltorphin I; > 15 hr- [D-Ala2, Ser4, D-Ala5]deltorphin. Although, no analogue was found to increase the BBB permeability coefficient (PC; x10(-4) cm/min) of the parent compounds ([D-Ala2]deltorphin II, PC = 23.49 +/- 2.42) analogues were identified: [Arg0, D-Ala2]deltorphin II, PC = 19.06 +/- 3.73 and [Pro-1, Pro0, D-Ala2]deltorphin II, PC = 22.22 +/- 5.93; which had similar permeability coefficients, even though they had larger molecular weights and, in the case of the cationic prodrug, a significantly lower lipophilicity. These analogues provide directions in the development of future pro-drugs for the treatment of pain and this study further clarifies the structure-activity relationship of the deltorphins.


Subject(s)
Analgesics, Opioid/pharmacology , Blood-Brain Barrier , Oligopeptides/pharmacology , Analgesics, Opioid/chemistry , Analgesics, Opioid/pharmacokinetics , Animals , Cattle , Half-Life , In Vitro Techniques , Male , Mice , Mice, Inbred ICR , Oligopeptides/chemistry , Oligopeptides/pharmacokinetics , Recurrence , Structure-Activity Relationship
11.
J Pharmacol Exp Ther ; 280(3): 1235-40, 1997 Mar.
Article in English | MEDLINE | ID: mdl-9067309

ABSTRACT

The delta opioid receptor-selective, enzymatically stable peptide [D-Penicillamine2,5]enkephalin (DPDPE) has recently acquired special significance with the identification of a saturable uptake system for this analgesic into the CNS. The aim of the present study was to characterize further the entry of [3H]DPDPE into the brain and CSF by means of a bilateral in situ brain perfusion method. Initial experiments revealed a saturable [3H]DPDPE uptake into the brain that followed Michaelis-Menten type kinetics with a K(m) value of 45.5 +/- 27.6 microM, a V(max) value of 51.1 +/- 13.2 pmol x min(-1) x g(-1) and a K(d) value of 0.6 +/- 0.3 microl x min(-1) x g(-1). Uptake of [3H]DPDPE into the CSF could not be inhibited (K(d) = 0.9 +/- 0.1 microl x min(-1) x g(-1)). Entry of [3H]DPDPE into the CNS was not inhibited in the presence of 10 mM 2-aminobicyclo-[2,2,1]-heptane-2-carboxylic acid (BCH) or 50 microM ICI 174,864, which suggests that the saturable mechanism does not involve the large neutral amino acid transporter or binding to opioid receptors. It would also appear that [3H]DPDPE is not in competition with either poly-L-lysine or insulin to enter the CNS. However, both of these substances significantly increased the CNS entry of [3H]DPDPE but not that of the vascular space marker [14C]sucrose, and this may have valuable clinical implications. It is not known at present which saturable uptake mechanism is responsible for the CNS entry of [3H]DPDPE, but overall the results suggest a carrier-mediated transport system.


Subject(s)
Brain/metabolism , Enkephalins/pharmacokinetics , Animals , Enkephalin, D-Penicillamine (2,5)- , Rats , Rats, Sprague-Dawley , Tritium
12.
J Pharmacol Exp Ther ; 280(1): 402-9, 1997 Jan.
Article in English | MEDLINE | ID: mdl-8996221

ABSTRACT

D-Phe-Cys-Tyr-D-Trp-Arg-Thr-Pen-Thr-NH2 (CTAP) is a cyclic, penicillamine-containing octapeptide that is structurally similar to somatostatin and displays greater antagonist potency and selectivity for mu-opioid receptors, compared with the classical mu-selective antagonist D-Phe-Cys-Tyr-D-Trp-Orn-Thr-Pen-Thr-NH2. The aim of this study was to determine whether CTAP can enter the central nervous system (CNS) by crossing either the blood-brain barrier or the blood-cerebrospinal fluid barrier (CSF) and to characterize the mechanism of CNS entry. CNS entry of [3H]CTAP was compared with that of the vascular space marker [14C]inulin and the mu-agonist [3H]morphine. By using an in situ brain perfusion technique coupled to high-performance liquid chromatographic analysis, greater amounts of radioactivity were detected in the brain or CSF at most time points for [3H]CTAP, compared with [14C]inulin. [3H]CTAP was found to remain predominantly intact in the brain after a 20-min rat brain perfusion (62.8%). CTAP was also stable in the blood and serum of rats (T1/2 > 500 min), showing that the structure of this peptide offers enzymatic resistance. Additionally, [3H]CTAP was found to be extensively protein-bound to albumin in the perfusion medium (68.2%) and to proteins in rat serum (84.2%). Entry into the brain and CSF was not inhibited by the addition of unlabeled CTAP to the perfusion medium, suggesting that passage into the CNS is most likely through diffusion across the membranes that comprise the blood-brain barrier, rather than by saturable transport. Also, greater amounts of [3H]morphine entered both the brain and CSF after a 20-min brain perfusion, compared with [3H]CTAP. The increased CNS penetration observed for [3H]morphine, compared with [3H]CTAP, is likely due to the increased lipophilicity of morphine, as shown by its higher octanol/saline partition coefficient. Based on the pharmacokinetic profile, CTAP may be a promising mu-selective antagonist that can be used as a treatment for opiate overdose or addiction and also as a pharmacological tool to further understand opioid neurobiology.


Subject(s)
Blood-Brain Barrier , Morphine/pharmacokinetics , Narcotic Antagonists/pharmacology , Narcotics/pharmacokinetics , Receptors, Opioid, mu/antagonists & inhibitors , Animals , Biological Availability , Inulin/pharmacokinetics , Mice , Peptide Fragments , Peptides/pharmacokinetics , Permeability , Protein Binding , Rats , Rats, Sprague-Dawley , Solubility , Somatostatin
13.
J Pharmacol Exp Ther ; 277(3): 1366-75, 1996 Jun.
Article in English | MEDLINE | ID: mdl-8667199

ABSTRACT

To improve the blood-brain barrier penetration of the delta-opioid receptor peptides [D-Pen2, D-Pen5]enkephalin (DPDPE) and [D-Pen2, L-Cys5]enkephalin (DPLCE), various prodrug forms were synthesized to increase lipophilicity and drug delivery to the brain. The aims of this study were 3-fold, 1) to assess the metabolic conversion of various DPDPE and DPLCE prodrugs in vitro using mouse brain homogenate and mouse serum, 2)to characterize the proteolytic enzymes responsible for cleaving prodrugs to the parent compounds using select peptidase inhibitors and 3)to assess the blood-brain barrier permeability of prodrugs, compared with their parent compounds, using the in vitro bovine brain microvessel endothelial cell culture model. The prodrugs with carboxyl-terminal phenylalanine residues (DPDPE-Phe and DPLCE-Phe) had significantly longer metabolic conversion times in both mouse serum and brain homogenates than did the prodrugs with amino-terminal phenylalanine residues. Inhibition of leucine aminopeptidase with bestatin in the serum increased the conversion time of Phe0-DPDPE from 6.8 min to 92.2 min. Inhibition of aminopeptidase M with amastatin in the brain homogenate increased the conversion time of Phe0-DPDPE from 3.9 min to > 450 min. The long half-life of DPLCE-Arg-Pro-Ala in serum (317 min) vs. brain (9.2 min) can be explained by the high levels of the degradative endopeptidase 24.15 (EC 3.4.24.15) in the central nervous system but not in plasma. The data also showed that, for specific prodrugs of DPDPE such as Phe0-DPDPE and DPDPE-Arg-Gly, the prodrug shows a significant improvement in permeability, compared with the parent compound. Therefore, these data provide evidence that prodrugs or prodrug-enzyme inhibitor combinations may optimize the delivery of peptide and/or protein drugs to the central nervous system.


Subject(s)
Analgesics/pharmacology , Blood-Brain Barrier/drug effects , Enkephalins/pharmacology , Prodrugs/pharmacology , Animals , Enkephalin, D-Penicillamine (2,5)- , In Vitro Techniques , Mice , Mice, Inbred Strains , Permeability/drug effects , Time Factors
14.
J Pharmacol Exp Ther ; 276(3): 1049-57, 1996 Mar.
Article in English | MEDLINE | ID: mdl-8786534

ABSTRACT

Biphalin (Tyr-D-Ala-Gly-Phe-NH)2 is a unique opioid peptide analog that contains two active enkephalin pharmacophores and is more potent than morphine and etorphine in eliciting analgesia after intrathecal administration. After systemic administration, only a small amount was detected in the brain, but analgesia was observed. Because halogenation of enkephalin analogs has been shown to increase the brain uptake after systemic administration, our research group synthesized both p-[Cl-Phe4,4']biphalin and p-[F-Phe4,4']biphalin. The aim of the present study was to characterize and compare the blood-to-central nervous system (CNS) pharmacokinetics and biological stability of biphalin and related halogenated analogs. The initial screening used an in vitro blood-brain barrier model and identified p-[Cl-Phe4,4')biphalin as the enkephalin analog with the best potential for greater CNS entry. The CNS uptake and stability of biphalin and p-[Cl-Phe4,4']biphalin was examined further using an in situ brain perfusion technique coupled to high-performance liquid chromatography analysis. Both biphalin and its chlorohalogenated analog, were found to significantly enter the CNS through both the blood-brain and blood-cerebrospinal fluid barriers. Chlorohalogenation of biphalin was shown to both improve CNS entry, most likely through an enhancement in lipophilicity, and increase biological stability. This study suggests that incorporation of chlorohalogens at the p-Phe4,4' position is a promising structural modification in the development of biphalin as a successful opioid drug for the clinic.


Subject(s)
Analgesics/pharmacology , Central Nervous System/metabolism , Enkephalins/pharmacology , Opioid Peptides/metabolism , Opioid Peptides/pharmacology , Animals , Blood-Brain Barrier/drug effects , Cattle , Chromatography, High Pressure Liquid , Enkephalins/cerebrospinal fluid , Kinetics , Radioligand Assay , Rats , Rats, Sprague-Dawley , Sucrose/metabolism
15.
J Neurochem ; 66(3): 1289-99, 1996 Mar.
Article in English | MEDLINE | ID: mdl-8769896

ABSTRACT

[D-Penicillamine2,5] enkephalin (DPDPE) is an enzymatically stable, delta-opioid receptor-selective peptide, which produces analgesia when given intracerebroventricularly. However, because only modest analgesic effects were seen after subcutaneous administration of DPDPE, it has been inferred that it does not cross the blood-brain barrier well. In this present study, a vascular brain perfusion technique in anesthetized rats was used to measure directly whether [3H]DPDPE could cross the blood-brain and/or the blood-CSF barriers. The results indicated that the brain uptake of [3H]DPDPE was significantly greater than that of [14C]sucrose, a vascular marker (p < 0.01), and than that of [3H]DPDPE into the CSF (p < 0.01). Furthermore, HPLC analysis confirmed the integrity of the 3H to DPDPE and demonstrated that intact [3H]DPDPE entered the brain. Although 1 mM leucine-enkephalin failed to inhibit uptake of [3H]DPDPE, unlabeled DPDPE (100 microM) caused a significant inhibition of the brain uptake (p < 0.01) but not the CSF uptake of [3H]DPDPE. These data provide evidence that intact [3H]DPDPE enters the CNS of anesthetized rats by saturable and nonsaturable mechanisms. In addition, the saturable mechanism is likely to be found at the blood-brain barrier, with the blood-CSF barrier playing only a minor role in the brain uptake of this peptide.


Subject(s)
Blood-Brain Barrier , Enkephalins/blood , Enkephalins/cerebrospinal fluid , Receptors, Opioid, delta/metabolism , Animals , Brain/metabolism , Chromatography, High Pressure Liquid , Enkephalin, D-Penicillamine (2,5)- , Enkephalin, Leucine/pharmacology , Enkephalins/pharmacology , Models, Biological , Perfusion/methods , Rats , Rats, Sprague-Dawley , Sucrose/metabolism
17.
J Pharmacol Exp Ther ; 270(2): 675-80, 1994 Aug.
Article in English | MEDLINE | ID: mdl-7915319

ABSTRACT

The blood brain barrier (BBB) presents an enzymatic barrier to the passage of peptides, from blood to brain. The studies presented here used a well established in vitro model of the BBB to measure the presence of peptidases and the permeability of two opioid peptides. The in vitro BBB model consisted of confluent monolayers of bovine brain microvessel endothelial cells (BMECs). Enkephalin metabolizing enzymes, total aminopeptidase, aminopeptidase M (APM), angiotensin converting enzyme (ACE) and neutral endopeptidase (NEP) activities were measured in BMEC monolayers. The effect of specific inhibitors of APM, ACE and NEP on the permeability of [Met5]enkephalin (Met-Enk) and a conformationally constrained and enzymatically stable analog, DPDPE, also was determined. High levels of membrane-associated enzyme activity were measured for total aminopeptidase, APM and ACE. Interestingly, the permeability coefficient of Met-Enk was increased 4-fold in the presence of specific inhibitors of APM and ACE. Low levels of NEP activity were measured in BMEC monolayers and inhibition of NEP had no effect on Met-Enk permeability. The permeability coefficient for DPDPE was not increased with enzyme inhibitors but was 4-fold greater than Met-Enk alone. In the presence of APM or ACE inhibitors, there was no difference in the permeability of DPDPE and Met-Enk. These experiments demonstrate the presence of specific peptidases in BMECs and that the presence of inhibitors to Met-Enk inactivating peptidases significantly increased permeability of this biologically active peptide.


Subject(s)
Aminopeptidases/metabolism , Blood-Brain Barrier , Enkephalin, Methionine/pharmacokinetics , Neprilysin/metabolism , Peptidyl-Dipeptidase A/metabolism , Amino Acid Sequence , Animals , Brain/enzymology , Brain/metabolism , CD13 Antigens , Capillary Permeability , Cattle , Cells, Cultured , Enkephalin, D-Penicillamine (2,5)- , Enkephalins , Molecular Sequence Data
18.
Proc Natl Acad Sci U S A ; 91(15): 7114-8, 1994 Jul 19.
Article in English | MEDLINE | ID: mdl-8041755

ABSTRACT

Most peptides have not proved useful as neuroactive drugs because they are blocked by the blood-brain barrier and do not reach their receptors within the brain. Intraperitoneally administered L-serinyl beta-D-glucoside analogues of [Met5]enkephalin (glycopeptides) have been shown to be transported across the blood-brain barrier to bind with targeted mu- and delta-opioid receptors in the mouse brain. The opioid nature of the binding has been demonstrated with intracerebroventricularly administered naloxone. Paradoxically, glucosylation decreases the lipophilicity of the peptides while promoting transport across the lipophilic endothelial layer. It is suggested that glucose transporter GLUT-1 is responsible for the transport of the peptide message. Profound and long-lasting analgesia has been observed in mice (tail-flick and hot-plate assays) with two of the glycopeptide analogues when administered intraperitoneally.


Subject(s)
Analgesics/pharmacology , Blood-Brain Barrier , Enkephalins/pharmacology , Glycopeptides/pharmacology , Amino Acid Sequence , Analgesics/pharmacokinetics , Animals , Biological Transport , Enkephalins/pharmacokinetics , Glycopeptides/pharmacokinetics , Mice , Molecular Sequence Data
19.
J Pharmacol Exp Ther ; 266(3): 1649-55, 1993 Sep.
Article in English | MEDLINE | ID: mdl-8371162

ABSTRACT

Confluent monolayers of primary and continuous passaged cultures of bovine brain microvessel endothelial cells (BMEC) have been suggested to model the blood-brain barrier (BBB). Increased lipophilicity has been previously suggested to increase BBB penetration. The intent of this study was to examine the effect that structural modifications of the [Met5]enkephalin analog DPDPE had on lipophilicity and passage across the BMEC. The BMEC consisted of a monolayer of confluent primary BMEC grown on polycarbonate (10 microns) filters. Permeability coefficients were calculated on the basis of the diffusion of peptides across the BMEC in a Side-Bi-Side diffusion chamber. Lipophilicity of the peptides examined was determined by using reversed-phase HPLC and calculating the capacity factor (k). Diffusion across the BMEC (for all peptides examined) was linear from 15 to 120 min; therefore, these time points were used to calculate permeability coefficients. Permeability coefficients ranged from 14.34 to 92.00 cm/min (x 10(-4), with [rho-ClPhe4,4']biphalin the highest. Analysis of variance coupled with the Newman-Keuls test showed significantly greater (P < .01) passage of select peptide analogs across the BMEC, including [rho-ClPhe4,4']biphalin, [rho-ClPhe4]DPDPE and reduced DPDPE. Interestingly, upon passage across the confluent monolayer, reduced DPDPE was converted to cyclized DPDPE. Calculated HPLC capacity factors ranged from 3.82 to 12.50. The most lipophilic peptide (highest) examined was acetylated Phe0-DPDPE. Analysis of the regression line of permeability coefficients plotted against capacity factors yielded a correlation coefficient of 0.745 (P < .01). The data provided in this study offer strong evidence that increasing peptide lipophilicity enhances passage across the BMEC.(ABSTRACT TRUNCATED AT 250 WORDS)


Subject(s)
Analgesics/pharmacokinetics , Blood-Brain Barrier/physiology , Enkephalin, Methionine/analogs & derivatives , Enkephalins/pharmacokinetics , Models, Biological , Amino Acid Sequence , Animals , Brain/blood supply , Cattle , Cells, Cultured , Chromatography, High Pressure Liquid , Endothelium, Vascular/cytology , Enkephalin, Methionine/pharmacokinetics , Male , Mice , Mice, Inbred Strains , Molecular Sequence Data , Predictive Value of Tests
SELECTION OF CITATIONS
SEARCH DETAIL
...