Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Molecules ; 29(8)2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38675665

ABSTRACT

In the search for new bioactive agents against the infectious pathogen responsible for the neglected tropical disease (NTD) mycetoma, we tested a collection of 27 essential oils (EOs) in vitro against Madurella mycetomatis, the primary pathogen responsible for the fungal form of mycetoma, termed eumycetoma. Among this series, the EO of Santalum album (Santalaceae), i.e., East Indian sandalwood oil, stood out prominently with the most potent inhibition in vitro. We, therefore, directed our research toward 15 EOs of Santalum species of different geographical origins, along with two samples of EOs from other plant species often commercialized as "sandalwood oils". Most of these EOs displayed similar strong activity against M. mycetomatis in vitro. All tested oils were thoroughly analyzed by GC-QTOF MS and most of their constituents were identified. Separation of the sandalwood oil into the fractions of sesquiterpene hydrocarbons and alcohols showed that its activity is associated with the sesquiterpene alcohols. The major constituents, the sesquiterpene alcohols (Z)-α- and (Z)-ß-santalol were isolated from the S. album oil by column chromatography on AgNO3-coated silica. They were tested as isolated compounds against the fungus, and (Z)-α-santalol was about two times more active than the ß-isomer.


Subject(s)
Madurella , Mycetoma , Oils, Volatile , Plant Oils , Santalum , Sesquiterpenes , Madurella/drug effects , Plant Oils/pharmacology , Plant Oils/chemistry , Oils, Volatile/pharmacology , Oils, Volatile/chemistry , Mycetoma/microbiology , Mycetoma/drug therapy , Santalum/chemistry , Sesquiterpenes/pharmacology , Sesquiterpenes/chemistry , Antifungal Agents/pharmacology , Antifungal Agents/chemistry , Microbial Sensitivity Tests
2.
Antimicrob Agents Chemother ; 68(5): e0161223, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38602413

ABSTRACT

Mycetoma is a devastating neglected tropical infection of the subcutaneous tissues. It is caused by fungal and bacterial pathogens recognized as eumycetoma and actinomycetoma, respectively. Mycetoma treatment involves diagnosing the causative microorganism as a prerequisite to prescribing a proper medication. Current therapy of fungal eumycetoma causative agents, such as Madurella mycetomatis, consists of long-term antifungal medication with itraconazole followed by surgery, yet with usually unsatisfactory clinical outcomes. Actinomycetoma, on the contrary, usually responds to treatment with co-trimoxazole and amikacin. Therefore, there is a pressing need to discover novel broad-spectrum antimicrobial agents to circumvent the time-consuming and costly diagnosis. Using the resazurin assay, a series of 23 naphthylisoquinoline (NIQ) alkaloids and related naphthoquinones were subjected to in vitro screening against two fungal strains of M. mycetomatis and three bacterial strains of Actinomadura madurae and A. syzygii. Seven NIQs, mostly dimers, showed promising in vitro activities against at least one strain of the mycetoma-causative pathogens, while the naphthoquinones did not show any activity. A synthetic NIQ dimer, 8,8'''-O,O-dimethylmichellamine A (18), inhibited all tested fungal and bacterial strains (IC50 = 2.81-12.07 µg/mL). One of the dimeric NIQs, michellamine B (14), inhibited a strain of M. mycetomatis and significantly enhanced the survival rate of Galleria mellonella larvae infected with M. mycetomatis at concentrations of 1 and 4 µg/mL, without being toxic to the uninfected larvae. As a result, broad-spectrum dimeric NIQs like 14 and 18 with antimicrobial activity are considered hit compounds that could be worth further optimization to develop novel lead antimycetomal agents.


Subject(s)
Alkaloids , Antifungal Agents , Madurella , Microbial Sensitivity Tests , Mycetoma , Mycetoma/drug therapy , Mycetoma/microbiology , Antifungal Agents/pharmacology , Animals , Alkaloids/pharmacology , Alkaloids/chemistry , Madurella/drug effects , Isoquinolines/pharmacology , Actinomadura/drug effects , Naphthoquinones/pharmacology , Larva/microbiology , Larva/drug effects , Moths/microbiology
3.
Molecules ; 26(13)2021 Jun 30.
Article in English | MEDLINE | ID: mdl-34209118

ABSTRACT

Redox-active drugs are the mainstay of parasite chemotherapy. To assess their repurposing potential for eumycetoma, we have tested a set of nitroheterocycles and peroxides in vitro against two isolates of Madurella mycetomatis, the main causative agent of eumycetoma in Sudan. All the tested compounds were inactive except for niclosamide, which had minimal inhibitory concentrations of around 1 µg/mL. Further tests with niclosamide and niclosamide ethanolamine demonstrated in vitro activity not only against M. mycetomatis but also against Actinomadura spp., causative agents of actinomycetoma, with minimal inhibitory concentrations below 1 µg/mL. The experimental compound MMV665807, a related salicylanilide without a nitro group, was as active as niclosamide, indicating that the antimycetomal action of niclosamide is independent of its redox chemistry (which is in agreement with the complete lack of activity in all other nitroheterocyclic drugs tested). Based on these results, we propose to further evaluate the salicylanilides, niclosamidein particular, as drug repurposing candidates for mycetoma.


Subject(s)
Actinomadura/growth & development , Madurella/growth & development , Mycetoma , Niclosamide/pharmacology , Animals , Humans , Mycetoma/drug therapy , Mycetoma/microbiology
4.
Molecules ; 25(12)2020 Jun 19.
Article in English | MEDLINE | ID: mdl-32575379

ABSTRACT

A screening of Sudanese medicinal plants for antiprotozoal activities revealed that the chloroform and water fractions of the ethanolic root extract of Haplophyllum tuberculatum exhibited appreciable bioactivity against Leishmania donovani. The antileishmanial activity was tracked by HPLC-based activity profiling, and eight compounds were isolated from the chloroform fraction. These included lignans tetrahydrofuroguaiacin B (1), nectandrin B (2), furoguaiaoxidin (7), and 3,3'-dimethoxy-4,4'-dihydroxylignan-9-ol (10), and four cinnamoylphenethyl amides, namely dihydro-feruloyltyramine (5), (E)-N-feruloyltyramine (6), N,N'-diferuloylputrescine (8), and 7'-ethoxy-feruloyltyramine (9). The water fraction yielded steroid saponins 11-13. Compounds 1, 2, and 5-13 are reported for the first time from Haplophyllum species and the family Rutaceae. The antiprotozoal activity of the compounds plus two stereoisomeric tetrahydrofuran lignans-fragransin B2 (3) and fragransin B1 (4)-was determined against Leishmania donovani amastigotes, Plasmodium falciparum, and Trypanosoma brucei rhodesiense bloodstream forms, along with their cytotoxicity to rat myoblast L6 cells. Nectandrin B (2) exhibited the highest activity against L. donovani (IC50 4.5 µM) and the highest selectivity index (25.5).


Subject(s)
Antimalarials/pharmacology , Leishmania donovani/growth & development , Plasmodium falciparum/growth & development , Rutaceae/chemistry , Trypanocidal Agents/pharmacology , Trypanosoma brucei rhodesiense/growth & development , Amides/chemistry , Amides/pharmacology , Animals , Antimalarials/chemistry , Lignans/chemistry , Lignans/pharmacology , Rats , Saponins/chemistry , Saponins/pharmacology , Trypanocidal Agents/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...