Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Eur J Hum Genet ; 2024 Feb 05.
Article in English | MEDLINE | ID: mdl-38316952

ABSTRACT

Heterozygous PRRT2 variants are frequently implicated in Self-limited Infantile Epilepsy, whereas homozygous variants are so far linked to severe presentations including developmental and epileptic encephalopathy, movement disorders, and intellectual disability. In a study aiming to explore the genetics of epilepsy in the Sudanese population, we investigated several families including a consanguineous family with three siblings diagnosed with self-limited infantile epilepsy. We evaluated both dominant and recessive inheritance using whole exome sequencing and genomic arrays. We identified a pathogenic homozygous splice-site variant in the first intron of PRRT2 [NC_000016.10(NM_145239.3):c.-65-1G > A] that segregated with the phenotype in this family. This work taps into the genetics of epilepsy in an underrepresented African population and suggests that the phenotypes of homozygous PRRT2 variants may include milder epilepsy presentations without movement disorders.

2.
Eur J Hum Genet ; 2023 Apr 03.
Article in English | MEDLINE | ID: mdl-37012327

ABSTRACT

Hereditary spinocerebellar degenerations (SCDs) is an umbrella term that covers a group of monogenic conditions that share common pathogenic mechanisms and include hereditary spastic paraplegia (HSP), cerebellar ataxia, and spinocerebellar ataxia. They are often complicated with axonal neuropathy and/or intellectual impairment and overlap with many neurological conditions, including neurodevelopmental disorders. More than 200 genes and loci inherited through all modes of Mendelian inheritance are known. Autosomal recessive inheritance predominates in consanguineous communities; however, autosomal dominant and X-linked inheritance can also occur. Sudan is inhabited by genetically diverse populations, yet it has high consanguinity rates. We used next-generation sequencing, genotyping, bioinformatics analysis, and candidate gene approaches to study 90 affected patients from 38 unrelated Sudanese families segregating multiple forms of SCDs. The age-at-onset in our cohort ranged from birth to 35 years; however, most patients manifested childhood-onset diseases (the mean and median ages at onset were 7.5 and 3 years, respectively). We reached the genetic diagnosis in 63% and possibly up to 73% of the studied families when considering variants of unknown significance. Combining the present data with our previous analysis of 25 Sudanese HSP families, the success rate reached 52-59% (31-35/59 families). In this article we report candidate variants in genes previously known to be associated with SCDs or other phenotypically related monogenic disorders. We also highlight the genetic and clinical heterogeneity of SCDs in Sudan, as we did not identify a major causative gene in our cohort, and the potential for discovering novel SCD genes in this population.

3.
Front Neurol ; 12: 720201, 2021.
Article in English | MEDLINE | ID: mdl-34489854

ABSTRACT

Introduction: Hereditary spastic paraplegia is a clinically and genetically heterogeneous neurological entity that includes more than 80 disorders which share lower limb spasticity as a common feature. Abnormalities in multiple cellular processes are implicated in their pathogenesis, including lipid metabolism; but still 40% of the patients are undiagnosed. Our goal was to identify the disease-causing variants in Sudanese families excluded for known genetic causes and describe a novel clinico-genetic entity. Methods: We studied four patients from two unrelated consanguineous Sudanese families who manifested a neurological phenotype characterized by spasticity, psychomotor developmental delay and/or regression, and intellectual impairment. We applied next-generation sequencing, bioinformatics analysis, and Sanger sequencing to identify the genetic culprit. We then explored the consequences of the identified variants in patients-derived fibroblasts using targeted-lipidomics strategies. Results and Discussion: Two homozygous variants in ABHD16A segregated with the disease in the two studied families. ABHD16A encodes the main brain phosphatidylserine hydrolase. In vitro, we confirmed that ABHD16A loss of function reduces the levels of certain long-chain lysophosphatidylserine species while increases the levels of multiple phosphatidylserine species in patient's fibroblasts. Conclusion: ABHD16A loss of function is implicated in the pathogenesis of a novel form of complex hereditary spastic paraplegia.

4.
Ann Hum Genet ; 85(5): 186-195, 2021 09.
Article in English | MEDLINE | ID: mdl-34111303

ABSTRACT

PRUNE1 is linked to a wide range of neurodevelopmental and neurodegenerative phenotypes. Multiple pathogenic missense and stop-gain PRUNE1 variants were identified in its DHH and DHHA2 phosphodiesterase domains. Conversely, a single splice alteration was previously reported. We investigated five patients from two unrelated consanguineous Sudanese families with an inherited severe neurodevelopmental disorder using whole-exome sequencing coupled with homozygosity mapping, segregation, and haplotype analysis. We identified a founder haplotype transmitting a homozygous canonical splice-donor variant (NM_021222.3:c.132+2T > C) in intron 2 of PRUNE1 segregated with the phenotype in all the patients. This splice variant possibly results in an in-frame deletion in the DHH domain or premature truncation of the protein. The phenotypes of the affected individuals showed phenotypic similarities characterized by remarkable pyramidal dysfunction and prominent extrapyramidal features (severe dystonia and bradykinesia). In conclusion, we identified a novel founder variant in PRUNE1 and corroborated abnormal splicing events as a disease mechanism in PRUNE1-related disorders. Given the phenotypes' consistency coupled with the founder effect, canonical and cryptic PRUNE1 splice-site variants should be carefully evaluated in patients presenting with prominent dystonia and pyramidal dysfunction.


Subject(s)
Dystonia/genetics , Hypokinesia/genetics , Neurodevelopmental Disorders/genetics , Phosphoric Monoester Hydrolases/genetics , RNA Splicing , Child , Child, Preschool , Consanguinity , Female , Haplotypes , Homozygote , Humans , Introns , Male , Pedigree , Phenotype , RNA Splice Sites , Sudan , Exome Sequencing
5.
Front Neurol ; 11: 569996, 2020.
Article in English | MEDLINE | ID: mdl-33193012

ABSTRACT

Background: Arginases catalyze the last step in the urea cycle. Hyperargininemia, a rare autosomal-recessive disorder of the urea cycle, presents after the first year of age with regression of milestones and evolves gradually into progressive spastic quadriplegia and cognitive dysfunction. Genetic studies reported various mutations in the ARG1 gene that resulted in hyperargininemia due to a complete or partial loss of arginase activity. Case Presentation: Five patients from an extended highly consanguineous Sudanese family presented with regression of the acquired milestones, spastic quadriplegia, and mental retardation. The disease onset ranged from 1 to 3 years of age. Two patients had epileptic seizures and one patient had stereotypic clapping. Genetic testing using whole-exome sequencing, done for the patients and a healthy parent, confirmed the presence of a homozygous novel missense variant in the ARG1 gene [GRCh37 (NM_001244438.1): exon 4: g.131902487T>A, c.458T>A, p.(Val153Glu)]. The variant was predicted pathogenic by five algorithms and affected a highly conserved amino acid located in the protein domain ureohydrolase, arginase subgroup. Sanger sequencing of 13 sampled family members revealed complete co-segregation between the variant and the disease distribution in the family in line with an autosomal-recessive mode of inheritance. Biochemical analysis confirmed hyperargininemia in five patients. Conclusion: This study reports the first Sudanese family with ARG1 mutation. The reported variant is a loss-of-function missense mutation. Its pathogenicity is strongly supported by the clinical phenotype, the computational functional impact prediction, the complete co-segregation with the disease, and the biochemical assessment.

SELECTION OF CITATIONS
SEARCH DETAIL
...