Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Arch Toxicol ; 94(1): 335-344, 2020 01.
Article in English | MEDLINE | ID: mdl-31722041

ABSTRACT

Snakebite envenomation is a serious medical problem in many developing tropical and subtropical countries. Envenomation is registered by the World Health Organization as a neglected tropical disease due to critical shortages in the production of antivenom. Envenomation causes more than 100,000 deaths annually. Snakebites result in several effects to include edema, blistering, hemorrhage, necrosis and respiratory paralysis. Antivenom is the preferred treatment for the systemic effects of snakebite envenomation, though these are often ineffective in neutralizing venom toxin-induced local tissue damage. To effectively treat snakebites, it is important to determine the lethal potency and pathophysiological effects induced by specific snake venoms. In the current study, we compared the lethality, and the hemorrhagic and dermonecrotic activities of venoms from three snakes in Egypt that are the primary causes of local tissue necrosis. Our data show that the intraperitoneal median lethal doses (LD50) for Cerastes cerastes, Echis carinatus and Naja nigricollis venoms are 0.946, 1.744 and 0.341 mg/kg mouse body weight, respectively. These results indicated that N. nigricollis venom is the most toxic and significantly accelerated the time of death compared to the other two venoms. However, no hematoma or associated edema appeared upon sub-plantar injection of N. nigricollis venom into the mice hind paw. Two hours following intradermal injection of C. cerastes and E. carinatus venoms, macroscopic analysis of the inner surface of mouse skin showed severe hemorrhagic lesions, whereas only insignificant hemorrhagic lesion appeared in mice injected with the highest dose of N. nigricollis venom. Furthermore, the minimum necrotic doses (MND) for the same venoms were 43.15, and 70.87 µg/mouse, or not observed in the case of N. nigricollis venom, respectively. These LD50 values and pathophysiological results can be used to guide development of antivenom against bites by these dangerous Egyptian snakes.


Subject(s)
Elapid Venoms/toxicity , Snake Bites/physiopathology , Viper Venoms/toxicity , Animals , Edema/chemically induced , Egypt , Female , Hemorrhage/chemically induced , Lethal Dose 50 , Male , Mice , Necrosis/chemically induced , Snake Bites/etiology
2.
Mol Hum Reprod ; 23(2): 116-131, 2017 02 10.
Article in English | MEDLINE | ID: mdl-27932550

ABSTRACT

STUDY QUESTION: Is it possible to identify original compounds that are able to enhance sperm motility from the venom of the scorpion Scorpio maurus palmatus? SUMMARY ANSWER: We identified a potent disulfide-rich peptide (DRP) of 73 amino acids that significantly improved the motility of fresh and frozen-thawed sperm in different mammalian species, including human, and improved fertilization outcome in mouse IVF experiments. WHAT IS KNOWN ALREADY: Any disturbance of sperm motility has a strong impact on fertilization and can lead to subfertility or infertility. Significant efforts have, therefore,  been made to identify pharmacological drugs that might improve sperm motility. Such compounds are particularly useful in azoospermia to improve testicular sperm extraction and in the domain of cryopreservation because the motility of frozen-thawed sperm is reduced. STUDY DESIGN, SIZE, DURATION: This was a basic science/medical research study aimed at identifying original compounds from a library of venoms able to enhance mammalian sperm motility, including human. We first identified in the venom of a scorpion S. m. palmatus a fraction able to potently activate sperm motility. We next purified and characterized the compound by liquid chromatography, mass spectrometry and peptide synthesis. Finally, the potency and toxicity of both purified and synthetic versions of the identified compound on sperm motility were assessed using different in vitro tests in different mammalian species. PARTICIPANTS/MATERIALS, SETTING, METHODS: For human sperm, biological samples were collected from normozoospermic donors and subfertile patients attending a reproduction department for diagnostic semen analysis. Testicular sperm was collected from cynomolgus monkeys (Macaca fascicularis) euthanized for the needs of specific authorized research projects. The peptide was also tested on bovine and mouse epidydimal sperm. We measured different sperm motility parameters with a computer-assisted sperm analysis system in the presence or absence of the peptide. MAIN RESULTS AND THE ROLE OF CHANCE: Size exclusion chromatography enabled us to isolate a fraction of the venom of S. m. palmatus able to increase sperm motility. By liquid chromatography and mass spectrometry, a peptide comprising 73 amino acids with 4 disulfide bridges was identified as responsible for the biological activity and called 'spermaurin'. The identity of spermaurin was confirmed by chemical synthesis. We showed that the peptide increased the motility of fresh and frozen-thawed human sperm. We observed that the potency of the peptide was higher on fresh ejaculated spermatozoa with a low motility, achieving a 100% increase of curvilinear velocity in poorly performing sperm. We also demonstrated that peptide is effective on bovine and mouse fresh epididymal, bovine frozen-thawed ejaculated and fresh non-human primate testicular sperm. Finally, in mouse IVF, the production of 2-cell embryos was increased by 24% when sperm were treated with the peptide. LIMITATIONS, REASONS FOR CAUTION: This work is an in vitro evaluation of the ability of spermaurin to improve sperm motility parameters. Another limitation of this study is the small number of human sperm samples tested with the natural (n = 36) and synthetic (n = 12) peptides. Moreover, the effect of the peptide on IVF outcome was only tested in mouse and further tests with human and bovine gametes are required to confirm and extend this result in other mammalian species. WIDER IMPLICATIONS OF THE FINDINGS: This work confirms our initial study showing that venoms represent an interesting source of molecules that are able to modify sperm physiology. Moreover, this work presents the first demonstrated biological action of a venom peptide from the scorpion S. m. palmatus with sequence similarities to La1 peptide from Liocheles australasiae (Wood scorpion), a widespread family of DRPs. LARGE SCALE DATA: Not applicable. STUDY FUNDING/COMPETING INTEREST(S): This work is part of the project 'LAB COM-14 LAB7 0004 01-LIPAV', funded by the program LabCom 2014 from the French Research Agency (ANR). Dr Arnoult reports grants from IMV Technologies during the conduct of the study. In addition, Drs Arnoult, Martinez, Ray and Schmitt have a patent EP16305642.7 pending containing some of the information presented in this manuscript.


Subject(s)
Embryo, Mammalian/drug effects , Fertility Agents/pharmacology , Peptides/pharmacology , Sperm Motility/drug effects , Spermatozoa/drug effects , Spider Venoms/chemistry , Adult , Amino Acid Sequence , Animals , Cattle , Cryopreservation , Embryo, Mammalian/cytology , Epididymis/cytology , Epididymis/drug effects , Epididymis/physiopathology , Female , Fertility Agents/chemical synthesis , Fertility Agents/isolation & purification , Fertilization in Vitro , Humans , Infertility, Male/drug therapy , Infertility, Male/physiopathology , Macaca fascicularis , Male , Mice , Peptide Library , Peptides/chemical synthesis , Peptides/isolation & purification , Scorpions , Semen Analysis , Sperm Motility/physiology , Spermatozoa/cytology , Spermatozoa/pathology , Spider Venoms/chemical synthesis , Spider Venoms/isolation & purification , Spider Venoms/pharmacology , Testis/cytology , Testis/drug effects , Testis/physiopathology
SELECTION OF CITATIONS
SEARCH DETAIL
...