Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Antibiotics (Basel) ; 12(7)2023 Jun 27.
Article in English | MEDLINE | ID: mdl-37508206

ABSTRACT

This study presents a green protocol for the fabrication of a multifunctional smart nanobiocomposite (NBC) (ZnO-PIACSB-TiO2) for secure antimicrobial and antibiofilm applications. First, shrimp shells were upgraded to a polyimidazolium amphiphilic chitosan Schiff base (PIACSB) through a series of physicochemical processes. After that, the PIACSB was used as an encapsulating and coating agent to manufacture a hybrid NBC in situ by co-encapsulating ZnONPs and TiO2NPs. The physicochemical and visual characteristics of the new NBC were investigated by spectral, microscopic, electrical, and thermal methods. The antimicrobial indices revealed that the newly synthesized, PIACSB-coated TiO2-ZnO nanocomposite is an exciting antibiotic due to its amazing antimicrobial activity (MIC/MBC→0.34/0.68 µg/mL, 0.20/0.40 µg/mL, and 0.15/0.30 µg/mL working against S. aureus, E. coli, and P. aeruginosa, respectively) and antifungal capabilities. Additionally, ZnO-PIACSB-TiO2 is a potential fighter of bacterial biofilms, with the results being superior to those of the positive control (Cipro), which worked against S. aureus (only 8.7% ± 1.9 biofilm growth), E. coli (only 1.4% ± 1.1 biofilm growth), and P. aeruginosa (only 0.85% ± 1.3 biofilm growth). Meanwhile, the NBC exhibits excellent biocompatibility, as evidenced by its IC50 values against both L929 and HSF (135 and 143 µg/mL), which are significantly higher than those of the MIC doses (0.24-24.85 µg/mL) that work against all tested microbes, as well as the uncoated nanocomposite (IC50 = 19.36 ± 2.04 and 23.48 ± 1.56 µg/mL). These findings imply that the new PIACSB-coated nanocomposite film may offer promising multifunctional food packaging additives to address the customer demand for safe, eco-friendly food products with outstanding antimicrobial and antibiofilm capabilities.

2.
ACS Omega ; 8(15): 14144-14159, 2023 Apr 18.
Article in English | MEDLINE | ID: mdl-37091426

ABSTRACT

The aim of this study is to evaluate the efficacy of mesoporous silica nanospheres as an adsorbent to remove doxorubicin (DOX) from aqueous solution. The surface and structural properties of mesoporous silica nanospheres were investigated using BET, SEM, XRD, TEM, ζ potential, and point of zero charge analysis. To optimize DOX removal from aqueous solution, a Box-Behnken surface statistical design (BBD) with four times factors, four levels, and response surface modeling (RSM) was used. A high amount of adsorptivity from DOX (804.84 mg/g) was successfully done under the following conditions: mesoporous silica nanospheres dose = 0.02 g/25 mL; pH = 6; shaking speed = 200 rpm; and adsorption time = 100 min. The study of isotherms demonstrated how well the Langmuir equation and the experimental data matched. According to thermodynamic characteristics, the adsorption of DOX on mesoporous silica nanospheres was endothermic and spontaneous. The increase in solution temperature also aided in the removal of DOX. The kinetic study showed that the model suited the pseudo-second-order. The suggested adsorption method could recycle mesoporous silica nanospheres five times, with a modest reduction in its ability for adsorption. The most important feature of our adsorbent is that it can be recycled five times without losing its efficiency.

3.
ACS Omega ; 7(20): 17483-17491, 2022 May 24.
Article in English | MEDLINE | ID: mdl-35647427

ABSTRACT

A modified metal-organic framework (MOF) named Al-MIL-53-N=SA-Br was synthesized via a Schiff-base reaction between the MOFs (Al-MIL-53-NH2) and 5-bromo salicylaldehyde. The robust functionalized Al-MIL-53-N=SA-Br was used as a novel spectrophotometric sensor for detecting Hg2+, Co2+, and Al3+ ions. In a wide range of concentrations, the absorption spectral intensity of Al-MIL-53-N=SA-Br increased linearly upon increasing the concentration of Hg2+, Co2+, and Al3+ ions. The limit of detection (LOD) of the proposed Al-MIL-53-N=SA-Br sensor reached 1.52 ppm of Hg2+ ion (7.56 × 10-9 M). Therefore, this study introduces a novel ratiometric Hg2+, Co2+, and Al3+ ions chemosensor. Simple treatment using thiourea or ethylenediaminetetraacetic acid can remove the metal ions from the used sensor and use it many times with a high efficiency. In addition, the Al-MIL-53-N=SA-Br sensor has a high adsorption capacity for these metal ions. The design of the robust Al-MIL-53-N=SA-Br sensor provided high stability, reproducibility, selectivity, high sensitivity, and a facile sensing design. Furthermore, the good absorption spectral stability of Al-MIL-53-N=SA-Br in aqueous media, the broad linear in sensing, and the low LOD of the Hg2+, Co2+, and Al3+ ions show its high potential in determining these ions in real water.

4.
RSC Adv ; 12(17): 10431-10442, 2022 Mar 31.
Article in English | MEDLINE | ID: mdl-35425012

ABSTRACT

In this work, we report two zero-dimensional Cd-based hybrid compounds, denoted CdACP and CdODA, where the Cd atoms adopt tetrahedral geometry. The optical analysis reveals that these materials are classified as wide-gap semi-conductors which makes them suitable for optoelectronic applications. The photoluminescence analysis proves the wavelength dependent white-light emission behavior of the investigated materials. The structural-optical property studies show that, thanks to the heavy halide effect, the CdACP exhibits both fluorescence and room temperature phosphorescence through harvesting triplet states. Meanwhile, in contrast to CdACP, the white light emission from CdODA is purely fluorescence in nature. In fact, within CdODA, both C-H⋯π and N-H⋯N interactions facilitate the intramolecular proton transfer (ESIPT) between the different cations which leads to ultra-fast fluorescence through excited state ESIPT. Under sub-gap excitations, the inorganic sub-lattice is responsible for the blue-green emission through the STE mechanism, while the organic cations contribute by an intense red emission.

5.
ACS Omega ; 7(1): 1288-1298, 2022 Jan 11.
Article in English | MEDLINE | ID: mdl-35036790

ABSTRACT

Chemical sensors based on mesoporous silica nanotubes (MSNTs) for the quick detection of Fe(III) ions have been developed. The nanotubes' surface was chemically modified with phenolic groups by reaction of the silanol from the silica nanotubes surface with 3-aminopropyltriethoxysilane followed by reaction with 3-formylsalicylic acid (3-fsa) or 5-formylsalicylic acid (5-fsa) to produce the novel nanosensors. The color of the resultant 3-fsa-MSNT and 5-fsa-MSNT sensors changes once meeting a very low concentration of Fe(III) ions. Color changes can be seen by the naked eye and tracked with a smartphone or fluorometric or spectrophotometric techniques. Many experimental studies have been conducted to find out the optimum conditions for colorimetric and fluorometric determining of the Fe(III) ions by the two novel sensors. The response time, for the two sensors, that is necessary to achieve a steady spectroscopic signal was less than 15 s. The suggested methods were validated in terms of the lowest limit of detection (LOD), the lowest limit of quantification (LOQ), linearity, and precision according to International Conference on Harmonization (ICH) guidelines. The lowest limit of detection that was obtained from the spectrophotometric technique was 18 ppb for Fe(III) ions. In addition, the results showed that the two sensors can be used eight times after recycling using 0.1 M EDTA as eluent with high efficiency (90%). As a result, the two sensors were successfully used to determine Fe(III) in a variety of real samples (tap water, river water, seawater, and pharmaceutical samples) with great sensitivity and selectivity.

SELECTION OF CITATIONS
SEARCH DETAIL
...