Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Biol Macromol ; 243: 125243, 2023 Jul 15.
Article in English | MEDLINE | ID: mdl-37295692

ABSTRACT

Rare earth elements have received a lot of attention in recent years due to their increasing demand in high-tech industries. Cerium is of current interest and is commonly used in different industries and medical applications. Cerium's uses are expanding due to its superior chemical characteristics over other metals. In this study, different functionalized chitosan macromolecule sorbents were developed from shrimp waste for cerium recovery from a leached monazite liquor. The process involves demineralization, deproteinization, deacetylation, and chemical modification steps. A new class of two-multi-dentate nitrogen and nitrogen­oxygen donor ligand-based macromolecule biosorbents was synthesized and characterized for cerium biosorption. The crosslinked chitosan/epichlorohydrin, chitosan/polyamines, and chitosan/polycarboxylate biosorbents have been produced from marine industrial waste (shrimp waste) using a chemical modification approach. The produced biosorbents were used to recover cerium ions from aqueous mediums. The affinity of the adsorbents towards cerium was tested in batch systems under different experimental conditions. The biosorbents showed high affinities for cerium ions. The percentage of cerium ions removed (%) from its aqueous system by polyamines and polycarboxylate chitosan sorbents is 85.73 and 90.92 %, respectively. The results indicated that the biosorbents have a high biosorption capacity for cerium ions from aqueous and leach liquor streams.


Subject(s)
Cerium , Chitosan , Water Pollutants, Chemical , Industrial Waste , Chitosan/chemistry , Ions , Adsorption , Water Pollutants, Chemical/chemistry
2.
Toxicol Res (Camb) ; 11(1): 245-254, 2022 Feb.
Article in English | MEDLINE | ID: mdl-35237429

ABSTRACT

A new and valid method was developed for the quantitative voltammetric analysis of midodrine hydrochloride (MID) in pharmaceutical tablets (Midodrine) and biological samples. The method is based on electro-oxidation of MID supported by both disposable pencil electrode (PE) and glassy carbon electrode (GCE). The analysis was carried out using cyclic voltammetry, differential pulse voltammetry (DPV), and square wave voltammetry (SWV) techniques. The proposed analytical method was validated according to ICH guidelines. MID was successively assayed at concentration ranges of 1.15-6.55 and 0.58-3.05 µg mL-1 at PE. Also, MID was successively assayed at concentration ranges of 1.15-5.28 and 2.86-27.6 µg mL-1 at GCE for DPV and SWV methods, respectively. The proposed method was successfully used for the analysis of MID in its dosage form and human urine with good recoveries of 99.66 ± 0.33, 99.8 ± 0.45 at PE and 99.8 ± 0.25, 98.7 ± 1.27 at GCE for the DPV and SWV methods, respectively. The suggested method could be applied to the studied drug in the quality control lab as well as in its pharmacokinetic studies.

3.
Int J Mol Sci ; 23(4)2022 Feb 21.
Article in English | MEDLINE | ID: mdl-35216511

ABSTRACT

The modification of chitosan represents a challenging task in obtaining biopolymeric materials with enhanced removal capacity for heavy metals. In the present work, the adsorption characteristics of chitosan modified with carboxyl groups (CTS-CAA) towards copper (II) and zinc (II) ions have been tested. The efficacy of the synthesis of CTS-CAA has been evaluated by studying various properties of the modified chitosan. Specifically, the functionalized chitosan has been characterized by using several techniques, including thermal analyses (differential scanning calorimetry and thermogravimetry), spectroscopies (FT-IR, XRD), elemental analysis, and scanning electron microscopy. The kinetics and the adsorption isotherms of CTS-CAA towards both Cu (II) and Zn (II) have been determined in the aqueous solvent under variable pH. The obtained results have been analyzed by using different adsorption models. In addition, the experiments have been conducted at variable temperatures to explore the thermodynamics of the adsorption process. The regeneration of CTS-CAA has been investigated by studying the desorption process using different eluents. This paper reports an efficient protocol to synthesize chitosan-based material perspective as regenerative adsorbents for heavy metals.


Subject(s)
Biocompatible Materials/chemistry , Chitosan/chemistry , Copper/chemistry , Ions/chemistry , Water/chemistry , Zinc/chemistry , Adsorption , Hydrogen-Ion Concentration , Kinetics , Spectroscopy, Fourier Transform Infrared/methods , Thermodynamics , Water Pollutants, Chemical/chemistry , Water Purification/methods
4.
Toxicol Res (Camb) ; 9(2): 81-90, 2020 Apr.
Article in English | MEDLINE | ID: mdl-32440339

ABSTRACT

Effect of cobalt manganese ferrite nanoparticles (M-NPs) (Co0.5Mn0.5Fe2O4) on vanadium hazards was assessment in the present study. Four groups of adult male albino rats [control group and three variably treated groups with ammonium metavanadate accompanied with or without cobalt M-NPs] were studied. The oral administration of ammonium metavanadate (Am.V) (20 mg/kg b.wt.) demonstrated the facility of vanadium to distribute and accumulate in the distinctive body organs and ordered as kidney > liver > lung > brain > spleen. Also, Am.V administration induce a significant disturbance in many physiological parameters (RBS, cholesterol, triglyceride, aspartate transaminase, alanine transaminase, Alb., bilirubin, Alk.Ph., urea, creat., Hb%, red blood cell count and packed cell volume) which might be expected to the liberation of free radicals according to the vanadium intoxication or its ability to disturb many body metabolisms. On the other hand, the intraperitoneal administration of 5% M-NPs in parallel with Am.V orally administration showed the ability of M-NPs to reduce Am.V dangerous impacts, which might be resulted from the essentiality of M-NPs metals to the body metabolism and to its free radicals scavenging properties. So, M-NPs could reduce Am.V hazardous effects.

5.
Int J Biol Macromol ; 139: 153-160, 2019 Oct 15.
Article in English | MEDLINE | ID: mdl-31356952

ABSTRACT

A new adsorbent, sulfated crosslinked chitosan (SGCH), has been synthesized for the effective extraction of beryllium ions from their aqueous solutions. In recent times, beryllium extraction has been of great importance because beryllium can be used in many applications such as in nuclear reactor, heat shields, high-technology ceramics, alloys and electronic heat sinks. SGCH has been synthesized by two successive phases. The first is the conversion of chitosan (CH) into non-soluble cross-linked chitosan (GCH) through the interaction between chitosan and glutaraldehyde. The second step is the formation of functional sulfonate groups onto the adsorbent material through the interaction of GCH with chlorosulfonic acid (sulfating agent). The role played by the sulfonate groups in the adsorption process was analyzed using FT-IR and SEM. Also, the role played by the solution pH, time, beryllium concentration and temperature on the batch adsorption process was investigated. Our results point to the successful preparation of SGCH adsorbent with high affinity for beryllium ions. The maximum sorption values of beryllium ions on the investigated biosorbent is 40.6 mg/g. The desorption of the loaded beryllium ions from the SGCH was achieved by using 1.5 M urea acidified by 0.6 M H2SO4.


Subject(s)
Beryllium/chemistry , Beryllium/isolation & purification , Chitosan/chemistry , Chitosan/chemical synthesis , Sulfonic Acids/chemistry , Adsorption , Chemistry Techniques, Synthetic , Time Factors
6.
RSC Adv ; 8(34): 19041-19050, 2018 May 22.
Article in English | MEDLINE | ID: mdl-35539644

ABSTRACT

We report herein the fabrication of an environmentally friendly, low-cost and efficient nanostructured mesoporous monetite plate-like mineral (CaHPO4) as an adsorbent for removal of radioactive cesium ions from aqueous solutions. The phase and textural features of the synthesized mesoporous monetite were well characterized by XRD, FTIR, SEM, HRTEM, DLS, TGA/TDA, and N2 adsorption/desorption techniques. The results indicate that the cesium ions were effectively adsorbed by the mesoporous monetite ion-exchanger (MMT-IEX) above pH 9.0. Different kinetic and isotherm models were applied to characterize the cesium adsorption process. The fabricated monetite exhibited a monolayer adsorption capacity up to 60.33 mg g-1 at pH of 9.5. The collected data revealed the higher ability of CaHPO4 for the removal of Cs(i) from aqueous media in an efficient way.

SELECTION OF CITATIONS
SEARCH DETAIL
...