Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Open Vet J ; 13(9): 1106-1115, 2023 09.
Article in English | MEDLINE | ID: mdl-37842101

ABSTRACT

Background: Small ruminants have a socioeconomic impact on Egypt's production of meat, milk, and wool. Hence, every effort should be taken to prevent infections. Aim: To elucidate the prevalence and serogrouping of Escherichia coli (E. coli) strains from diarrheic lambs and kids, determine their antibiotic susceptibility and associated risk factors affecting the occurrence of the disease, and establish the most common virulence genes marker and major antimicrobial resistance genes. Methods: A total of 150 diarrheic animals (95 lambs and 55 kids) at different ages and seasons were subjected to clinical examination. Rectal swabs were collected from 150 diarrheic animals for isolation and biochemical identification of E. coli. Results: The bacteriological examination revealed that 62/95 lambs and 26/55 kids with percentages of 65% and 47%, respectively, showed infection with E. coli. Serotyping of 88 isolates of E. coli revealed the strains belonging to O2(8), O55(17), O84(5), O17(4), O6(8), O91(17), O26(9), O103(5), O126(5), O124(6), and O159(4). A total of 21 isolates were examined by multiplex polymerase chain reaction assay for detection of virulence and resistance genes. All examined isolates possessed a combination between intimin gene and heat-stable toxin (100%), the serine protease (pic) gene on 8/21 isolates of O55, O2, O6 (38%), and α-hemolysin gene on 8/21 isolates of O26, O91(38%) while adherent invasive gene (invA) gene on 3/21 isolates of O124, O159 (14%) which divided diarrheagenic E. coli into four types assigned to be atypical enteropathogenic E. coli (48%), atypical enterohemorrhagic E. coli 35%), atypical enterotoxigenic E. coli (6%), and atypical enteroinvasive E. coli (11%). On the other hand, the results of antimicrobial susceptibility testing revealed high resistance to ampicillin, erythromycin, and tetracycline (100%) and amoxicillin/clavulanic acid (92%) but were highly sensitive to gentamicin, imipenem, norfloxacin, ciprofloxacin, chloramphenicol, and amikacin (100%). Concerning to ß lactams antibiotic resistance genes of examined isolates had blaSHV (100%) and blaCTX-M (43%). For tetracycline, we detected the tetA in all examined isolates. Conclusion: The wide spread of atypical E. coli strains among diarrheic lambs and kids with marked resistance to several antibiotics of interest and the detection of major resistance genes assess the potential risk of this pathogen to animal and public health.


Subject(s)
Anti-Infective Agents , Enteropathogenic Escherichia coli , Escherichia coli Infections , Sheep Diseases , Animals , Sheep , Anti-Bacterial Agents/pharmacology , Virulence/genetics , Serogroup , Prevalence , Egypt/epidemiology , Drug Resistance, Bacterial/genetics , Escherichia coli Infections/epidemiology , Escherichia coli Infections/veterinary , Enteropathogenic Escherichia coli/genetics , Tetracycline , Microbial Sensitivity Tests/veterinary , Sheep, Domestic , Sheep Diseases/drug therapy , Sheep Diseases/epidemiology
2.
Open Vet J ; 12(4): 451-462, 2022.
Article in English | MEDLINE | ID: mdl-36118715

ABSTRACT

Background: Lumpy skin disease (LSD) is endemic in Egypt despite the Egyptian authorities' annual mass vaccination of cattle with sheeppox vaccine (Veterinary Serum and Vaccine Research Institute, Egypt), and the LSD virus (LSDV) continues to thrive practically every summer. The disease has a huge economic impact on the trade of the animal and its by-product. Aim: This paper study the molecular characterization of LSDV strains that have been circulating in Sharkia Governorate, Egypt, for three successive years (2018, 2019, and 2020). Methods: A total of 61 specimens (26 skin nodules and 35 oculonasal swabs) were collected from a clinic in the hospital of veterinary medicine, Zagazig University, during the summer months (July, August, and September) of three outbreaks in 2018, 2019, and 2020. These were examined by polymerase chain reaction (PCR) based on the open reading frame 103 (ORF103) gene to confirm the suspected cases and determine the degree of homology between the three different outbreaks during three successive years between each other and between the derived sequences of GenBank. Results: Cattle is thought to be infected with LSDV due to the presence of scattered local or diffuse circumscribed skin nodules along with fever and lymph node enlargement and sometimes leg edema. The PCR approach proved rapid, sensitive, and specific for the detection of LSDV and confirmative diagnosis of the disease. Forty-six were detected to be positive by PCR (75.4%). The seven sequenced samples were translated to amino acid and registered in GenBank under accession number MW357655-MW357661. A single nucleotide mutation and amino acid variation were observed at positions 161 C (2020)/T (2018&2019) and consequently, a change in the amino acid at position 54 P (2020)/L (2018&2019) between the outbreak in 2020 and those in 2018 and 2019, respectively. The field LSDV isolates from Egypt cattle were more closely related to other LSDV sequences from Africa (Kenya), Asia, Europe, and the United States.These findings highlight the necessity of ongoing surveillance and characterization of circulating strains and the need to improve procedures for distinguishing vaccine strains from field viruses.


Subject(s)
Lumpy skin disease virus , Animals , Cattle , Humans , Amino Acids/genetics , Disease Outbreaks/veterinary , Egypt/epidemiology , Lumpy skin disease virus/genetics , Nucleotides , Phylogeny
3.
Open Vet J ; 12(2): 273-280, 2022.
Article in English | MEDLINE | ID: mdl-35603066

ABSTRACT

Background: Orf is a highly contagious viral skin disease in sheep and goats caused by Orf virus (ORFV) in the genus Parapoxvirus. Although sheep and goats are considered an essential food resource, particularly in Africa, ORFV infection represents an increasing challenge to animal productivity causing high economic losses. Aim: This study aimed to detect and characterize the ORFV in suspected clinically diseased goats in two neighboring Egyptian governorates, Al-Sharkia and Ismailia, flocks during April 2020 and July 2021by using PCR and phylogenetic analysis of partial B2L sequence.he present study indicate the necessity for establishing normal heart values in conscious and anaesthetized individuals. Methods: Kids from two Egyptian governorates showed the clinical picture of ORFV infection. Samples were collected (n = 15) from two different flocks during April 2020 and July 2021. PCR was carried out to detect the ORFV by targeting a highly conserved sequence within ORFV (B2L) gene. To determine the phylogenetic relationship with other ORFV strains, sequencing and phylogenetic analysis were performed. Results: ORFV infection was confirmed in 12 samples of oral scabs (80%) by PCR targeting a highly conserved sequence within B2L gene. Sequencing of DNA products was performed and obtained sequences revealed 100% identity at the nucleotide level. Two ORFVs, one from each outbreak showed 98.2% nucleotide identity with a previous Egyptian ORFV (KP984529) whereas our isolates showed higher nucleotide identities, 99.1% and 98.7% with ORFV strains from neighboring countries, Sudan and Ethiopia, respectively. The phylogenetic tree grouped isolates into two main clusters, cluster I included isolates of this study and foreign ones mainly from China, India, and Sudan. Interestingly, the vaccine strains of ORF used in different countries were grouped in cluster II with previous Egyptian isolate (KP984529), Ethiopian and Israeli ORFV isolates. Conclusion: Molecular characterization of B2L gene of ORFV isolates revealed higher sequence identities and more close genetic relationships with other ORFV strains circulating in neighboring countries than with the Egyptian isolates. These findings provide an insight into the genetic diversity of field ORFV isolates circulating in goats in the Egyptian governorates.


Subject(s)
Ecthyma, Contagious , Goat Diseases , Orf virus , Sheep Diseases , Animals , Ecthyma, Contagious/epidemiology , Egypt/epidemiology , Goat Diseases/epidemiology , Goats , Nucleotides , Orf virus/genetics , Phylogeny , Sheep
SELECTION OF CITATIONS
SEARCH DETAIL
...