Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Monit Assess ; 194(9): 669, 2022 Aug 13.
Article in English | MEDLINE | ID: mdl-35963977

ABSTRACT

Groundwater is an important source for domestic and irrigation purposes in Asyut area. Water quality varied widely due to complex geochemical processes and pollution sources. Understanding the processes controlling groundwater chemistry is necessary to overcome related problems. Multivariate statistics revealed that groundwater is affected by anthropogenic recharge (agricultural/organic pollution), mineralization, and redox processes. Contributions from natural vs. anthropogenic sources explain the variance in hydrochemical data. Shallow wells are relatively higher in bicarbonate content due to oxidation of organic pollutants. Shallow wells anomaly high with iron and organically polluted are most probably owing to pipe corrosion in residential areas. N fertilization impact on natural weathering has been demonstrated. Groundwater is getting more mineralized toward desert fringes due to lithological and hydrogeological characteristics under unconfined conditions. Evaporation factor enhances groundwater salinity under aridity. Fe and Mn contents are relatively higher as the redox potential is getting more reducing. The current study will help in building suitable management plan to protect the aquifer.


Subject(s)
Groundwater , Water Pollutants, Chemical , Egypt , Environmental Monitoring , Groundwater/chemistry , Water Pollutants, Chemical/analysis , Water Quality
2.
Environ Pollut ; 214: 892-902, 2016 Jul.
Article in English | MEDLINE | ID: mdl-27179234

ABSTRACT

The Red Sea is considered one of the youngest oceanic systems, with unique physical, geochemical and biological characteristics. Tourism, industrialization, extensive fishing, oil processing and shipping are extensive sources of pollution in the Red Sea. We analyzed the geochemical characteristics and microbial community of sediments along the Egyptian coast of the Red Sea. Our sites mainly included 1) four ports used for shipping aluminum, ilmenite and phosphate; 2) a site previously reported to have suffered extensive oil spills; and 3) a site impacted by tourism. Two major datasets for the sediment of ten Red Sea coastal sites were generated; i) a chemical dataset included measurements of carbon, hydrogen, nitrogen and sulfur, metals and selected semi-volatile oil; and ii) a 16S rRNA Pyrotags bacterial metagenomic dataset. Based on the taxonomic assignments of the 16S rRNA Pyrotags to major bacterial groups, we report 30 taxa constituting an Egyptian Red Sea Coastal Microbiome. Bacteria that degrade hydrocarbons were predominant in the majority of the sites, particularly in two ports where they reached up to 76% of the total identified genera. In contrast, sulfate-reducing and sulfate-oxidizing bacteria dominated two lakes at the expense of other hydrocarbon metabolizers. Despite the reported "Egyptian Red Sea Coastal Microbiome," sites with similar anthropogenic pollutants showed unique microbial community abundances. This suggests that the abundance of a specific bacterial community is an evolutionary mechanism induced in response to selected anthropogenic pollutants.


Subject(s)
Microbiota/drug effects , Water Pollutants, Chemical/toxicity , Bacteria/drug effects , Bacteria/genetics , Bacteria/growth & development , Egypt , Environment , Indian Ocean , Microbial Consortia/drug effects , Microbial Consortia/genetics , Microbiota/genetics , RNA, Bacterial/genetics , RNA, Ribosomal, 16S/genetics , Sequence Analysis, RNA
3.
Front Microbiol ; 5: 363, 2014.
Article in English | MEDLINE | ID: mdl-25157243

ABSTRACT

The Red Sea possesses a unique geography, and its shores are rich in mangrove, macro-algal and coral reef ecosystems. Various sources of pollution affect Red Sea biota, including microbial life. We assessed the effects of industrialization on microbes along the Egyptian Red Sea coast at eight coastal sites and two lakes. The bacterial communities of sediment samples were analyzed using bacterial 16S rDNA pyrosequencing of V6-V4 hypervariable regions. The taxonomic assignment of 131,402 significant reads to major bacterial taxa revealed five main bacterial phyla dominating the sampled sites: Proteobacteria (68%), Firmicutes (13%), Fusobacteria (12%), Bacteriodetes (6%), and Spirochetes (0.03%). Further analysis revealed distinct bacterial consortia that primarily included (1) marine Vibrio spp.-suggesting a "marine Vibrio phenomenon"; (2) potential human pathogens; and (3) oil-degrading bacteria. We discuss two divergent microbial consortia that were sampled from Solar Lake West near Taba/Eilat and Saline Lake in Ras Muhammad; these consortia contained the highest abundance of human pathogens and no pathogens, respectively. Our results draw attention to the effects of industrialization on the Red Sea and suggest the need for further analysis to overcome the hazardous effects observed at the impacted sites.

SELECTION OF CITATIONS
SEARCH DETAIL
...