Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Cells Tissues Organs ; 210(3): 195-217, 2021.
Article in English | MEDLINE | ID: mdl-34280918

ABSTRACT

Sepsis-associated acute lung injury (ALI) is a critical condition characterized by severe inflammatory response and mitochondrial dysfunction. Coenzyme Q10 (CoQ10) and aescin (AES) are well-known for their anti-inflammatory activities. However, their effects on lipopolysaccharide (LPS)-induced lung injury have not been explored yet. Here, we asked whether combined pretreatment with CoQ10 and AES synergistically prevents LPS-induced lung injury. Fifty male rats were randomized into 5 groups: (1) control; (2) LPS-treated, rats received a single i.p. injection of LPS (8 mg/kg); (3) CoQ10-pretreated, (4) AES-pretreated, or (5) combined-pretreated; animals received CoQ10 (100 mg/kg), AES (5 mg/kg), or both orally for 7 days before LPS injection. Combined CoQ10 and AES pretreatment significantly reduced lung injury markers; 52.42% reduction in serum C-reactive protein (CRP), 53.69% in alkaline phosphatase (ALKP) and 60.26% in lactate dehydrogenase (LDH) activities versus 44.58, 37.38, and 48.6% in CoQ10 and 33.81, 34.43, and 39.29% in AES-pretreated groups, respectively. Meanwhile, combination therapy significantly reduced interleukin (IL)-1ß and tumor necrosis factor (TNF)-α expressions compared to monotherapy (p < 0.05). Additionally, combination therapy prevented LPS-induced histological and mitochondrial abnormalities greater than separate drugs. Western blotting indicated that combination therapy significantly suppressed nucleotide-binding oligomerization domain (NOD)-like receptors-3 (NLRP-3) inflammasome compared to separate drugs (p < 0.05). Further, combination therapy significantly decreased the expression of signaling cascades, p38 mitogen-activated protein kinases (p38 MAPK), nuclear factor kappa B (NF-κB)-p65, and extracellular-regulated kinases 1/2 (ERK1/2) versus monotherapy (p < 0.05). Interestingly, combined pretreatment significantly downregulated high mobility group box-1 (HMGB1) by 72.93%, and toll-like receptor 4 (TLR4) by -0.93-fold versus 61.92%, -0.83-fold in CoQ10 and 38.67%, -0.70-fold in AES pretreatment, respectively. Our results showed for the first time that the enhanced anti-inflammatory effect of combined CoQ10 and AES pretreatment prevented LPS-induced ALI via suppression of NLRP-3 inflammasome through regulation of HMGB1/TLR4 signaling pathway and mitochondrial stabilization.


Subject(s)
Acute Lung Injury , Sepsis , Acute Lung Injury/drug therapy , Acute Lung Injury/etiology , Animals , Escin , Lipopolysaccharides , Male , NF-kappa B , Rats , Sepsis/complications , Sepsis/drug therapy , Ubiquinone/analogs & derivatives
2.
J Biochem Mol Toxicol ; 35(5): e22738, 2021 May.
Article in English | MEDLINE | ID: mdl-33522649

ABSTRACT

Cisplatin (Cis) is one of the most potent and effective broad-spectrum antitumor drugs, but its use is limited due to nephrotoxicity. The current study investigated the renoprotective effect of umbelliferone (UMB) on Cis-induced nephrotoxicity in rats. Renal injury was induced by a single injection of Cis (7 mg/kg, ip). Our results exhibited that the injection of Cis significantly disrupted renal function biomarkers as well as KIM-1 expression. The expressions of TNF-α, IL-1ß, NF-kB-p65, and IKKß were elevated along with downregulation of IkBα expression. Also, Cis disrupted cellular oxidant/antioxidant balance through the reduction of glutathione (GSH), glutathione-S-transferase (GST), and superoxide dismutase (SOD) levels and elevation of malondialdehyde (MDA) content. On the contrary, the levels of renal function biomarkers, cytokines, NF-kB-p65, IkBα, IKKß, and oxidant/antioxidant status have been improved after UMB treatment. Mechanistically, rats administered Cis only exhibited a significant decrease in NRF2 and cytoglobin expressions as well as the CREB, SIRT1, FOXO-3, and PPAR-γ genes. Treatment with UMB significantly upregulated NRF2 and cytoglobin proteins, as well as effectively increased the expression of CREB, SIRT1, FOXO-3, PPAR-γ, and NRF2 genes. Histopathological findings strongly supported our biochemical results, as evidenced by attenuation of renal hemorrhage, cast diffusion, and inflammatory cell infiltration. Interestingly, UMB significantly enhanced Cis cytotoxicity in both HL-60 and HeLa cells in a dose-dependent manner. Together, our results demonstrated that UMB can protect against Cis-induced nephrotoxicity in normal rats along with the enhancement of its in vitro antitumor activity. These findings suggested that UMB could be used as a potential adjuvant therapy in Cis chemotherapeutic protocols.


Subject(s)
Cisplatin/adverse effects , Cytoglobin/metabolism , Forkhead Box Protein O3/metabolism , Kidney Diseases , Kidney , NF-E2-Related Factor 2/metabolism , Signal Transduction/drug effects , Sirtuin 1/metabolism , Transcription Factor RelA/metabolism , Umbelliferones/pharmacology , Animals , Cisplatin/pharmacology , Kidney/injuries , Kidney/metabolism , Kidney Diseases/chemically induced , Kidney Diseases/metabolism , Kidney Diseases/prevention & control , Male , Rats , Rats, Wistar
SELECTION OF CITATIONS
SEARCH DETAIL
...