Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Int J Pharm ; 658: 124218, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38734273

ABSTRACT

Alzheimer's disease (AD) is an age-related neurodegenerative disorder that causes severe dementia and memory loss. Surface functionalized poly(lactic-co-glycolic acid) nanoparticles have been reported for better transport through the blood-brain barrier for AD therapy. This study investigated the improved therapeutic potential of berberine-loaded poly(lactic-co-glycolic acid)/Tet-1 peptide nanoparticles (BBR/PLGA-Tet NPs) in a rat model of sporadic AD. BBR was loaded into the PLGA-Tet conjugate. BBR/PLGA-Tet NPs were physicochemically and morphologically characterized. AD was achieved by bilateral intracerebroventricular (ICV) injection of streptozotocin (STZ). Cognitively impaired rats were divided into STZ, STZ + BBR, STZ + BBR/PLGA-Tet NPs, and STZ + PLGA-Tet NPs groups. Cognitive improvement was assessed using the Morris Water Maze. Brain acetylcholinesterase and monoamine oxidase activities, amyloid ß42 (Aß42), and brain glycemic markers were estimated. Further, hippocampal neuroplasticity (BDNF, pCREB, and pERK/ERK), Tau pathogenesis (pGSK3ß/GSK3ß, Cdk5, and pTau), inflammatory, and apoptotic markers were evaluated. Finally, histopathological changes were monitored. ICV-STZ injection produces AD-like pathologies evidenced by Aß42 deposition, Tau hyperphosphorylation, impaired insulin signaling and neuroplasticity, and neuroinflammation. BBR and BBR/PLGA-Tet NPs attenuated STZ-induced hippocampal damage, enhanced cognitive performance, and reduced Aß42, Tau phosphorylation, and proinflammatory responses. BBR/PLGA-Tet NPs restored neuroplasticity, cholinergic, and monoaminergic function, which are critical for cognition and brain function. BBR/PLGA-Tet NPs may have superior therapeutic potential in alleviating sporadic AD than free BBR due to their bioavailability, absorption, and brain uptake.


Subject(s)
Alzheimer Disease , Amyloid beta-Peptides , Disease Models, Animal , Hippocampus , Nanoparticles , Polylactic Acid-Polyglycolic Acid Copolymer , Streptozocin , tau Proteins , Animals , Alzheimer Disease/drug therapy , Alzheimer Disease/chemically induced , Polylactic Acid-Polyglycolic Acid Copolymer/chemistry , Polylactic Acid-Polyglycolic Acid Copolymer/administration & dosage , Male , Nanoparticles/chemistry , Hippocampus/drug effects , Hippocampus/metabolism , tau Proteins/metabolism , Rats , Amyloid beta-Peptides/metabolism , Peptide Fragments/administration & dosage , Rats, Sprague-Dawley , Nanoparticle Drug Delivery System/chemistry , Drug Carriers/chemistry , Brain/drug effects , Brain/metabolism , Brain/pathology , Maze Learning/drug effects , Rats, Wistar
2.
Antioxidants (Basel) ; 11(7)2022 Jun 27.
Article in English | MEDLINE | ID: mdl-35883763

ABSTRACT

Long-term glucocorticoids can alter sperm motility, vitality, or morphology, disrupting male reproductive function. This study scrutinized the synergistic benefits of two Egyptian plants against dexamethasone (Dexa)-induced testicular and autophagy dysfunction in male rats. Phytochemical ingredients and the combination index were estimated for Purslane ethanolic extract (PEE) and Chicory water extract (CWE). Four control groups received saline and 100 mg/kg of each PEE, CWE, and PEE/CWE, daily for 8 weeks. Dexa (1 mg/kg daily for 6 weeks) induced infertility where PEE, CWE, and PEE/CWE were given. Seminal analysis, male hormones, glycemic and oxidative stress markers, endoplasmic reticulum (ER) stress markers (Sigma 1R and GRP78), and autophagy regulators (Phospho-mTOR, LC3I/II, PI3KC3, and Beclin-1, P62, ATG5, and ATG7) were measured. The in vitro study illustrated the synergistic (CI < 1) antioxidant capacity of the PEE/CWE combination. Dexa exerts testicular damage by inducing oxidative reactions, a marked reduction in serum testosterone, TSH and LH levels, insulin resistance, ER stress, and autophagy. In contrast, the PEE and CWE extracts improve fertility hormones, sperm motility, and testicular histological alterations through attenuating oxidative stress and autophagy, with a synergistic effect upon combination. In conclusion, the administration of PEE/CWE has promised ameliorative impacts on male infertility and can delay disease progression.

SELECTION OF CITATIONS
SEARCH DETAIL