Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Biosensors (Basel) ; 12(11)2022 Oct 27.
Article in English | MEDLINE | ID: mdl-36354440

ABSTRACT

BACKGROUND: The prostate-specific antigen (PSA) is an important cancer biomarker that is commonly utilized in the diagnosis of prostate cancer. The development of a PSA determination technique that is rapid, simple, and inexpensive, in addition to highly accurate, sensitive, and selective, remains a formidable obstacle. METHODS: In this study, we developed a practical biosensor based on Zn(II) metal-organic framework nanoparticles (Zn-MOFs-NPs). Many spectroscopic and microanalytical tools are used to determine the structure, morphology, and physicochemical properties of the prepared MOF. RESULTS: According to the results, Zn-MOFs-NPs are sensitive to PSA, selective to an extremely greater extent, and stable in terms of chemical composition. Furthermore, the Zn-MOFs-NPs did not exhibit any interferences from other common analytes that might cause interference. The detection limit for PSA was calculated and was 0.145 fg/mL throughout a wide linear concentration range (0.1 fg/mL-20 pg/mL). CONCLUSIONS: Zn-MOFs-NPs were successfully used as a growing biosensor for the monitoring and measurement of PSA in biological real samples.


Subject(s)
Biosensing Techniques , Metal Nanoparticles , Metal-Organic Frameworks , Prostatic Neoplasms , Male , Humans , Prostate-Specific Antigen , Metal-Organic Frameworks/chemistry , Zinc/chemistry , Biosensing Techniques/methods , Prostatic Neoplasms/diagnosis , Limit of Detection , Metal Nanoparticles/chemistry , Electrochemical Techniques/methods
2.
Anal Bioanal Chem ; 414(29-30): 8379-8388, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36287223

ABSTRACT

Nowadays, in the clinical, pharmaceutical, and environmental sectors, the development of facile and sensitive analytical methods and/or innovative devices for the follow-up and detection of antibiotics and pharmaceutical formulations, in general, are urgently needed and still challenging. This work declared three vital applications for broad-spectrum nitrofurantoin (macrofuran) antibiotic detection and quantification: A colorimetric method, a coated paper strip-based nano-lanthanum complex prototype and fabrication of smart electronic color sensor device-based coated paper strips. The colorimetric method showed a significant response upon increasing the concentration of the nitrofurantoin in a range between (1.0-100.0 ng/mL) via a visual color change from orange-yellow to red colors degree with detection and quantification limits of 0.175 and 0.53 ng/mL, respectively, whereas the nano-lanthanum complex coated paper strip prototype showed qualitative on-site sensing for nitrofurantoin via naked eye color changes which can be detected anywhere. Moreover, a smart prototype for detecting macrofuran in the means of paper color change in the RGB color component extraction algorithm and the grayscale projection value processing algorithm was fabricated. The change in RGB color on the coated paper strip was detected using an electronic color sensor device. The developed colorimetric method, coated paper strip, and the electronic color sensor device prototype exhibited fast, simple, costless, and selective towards macrofuran over the competing analyzed. As well as, showed good applicability in the different real samples spiked with different concentrations of macrofuran.


Subject(s)
Colorimetry , Nitrofurantoin , Colorimetry/methods , Electronics , Pharmaceutical Preparations
3.
RSC Adv ; 11(16): 9675-9681, 2021 Mar 01.
Article in English | MEDLINE | ID: mdl-35423443

ABSTRACT

Macrofuran is widely used as an antibiotic for the treatment of urinary tract infections. Nevertheless, it is prohibited due to toxicity and environmental concerns. The development of a fast, simple, and cost-effective approach for the determination of macrofuran antibiotic (MFA) is still a challenge. Herein, we report a chemosensor based on a nano-lanthanum complex derived from phenylenediamine. The physicochemical properties and structure of the prepared complex were confirmed using different spectroscopic tools such as X-ray diffraction (XRD), scanning electron microscopy equipped with EDX, elemental analysis, Fourier transform-infrared (FT-IR) spectroscopy, UV-vis spectroscopy, mass spectroscopy and photoluminescence (PL). The nano-lanthanum complex was found to be chemically stable, highly sensitive and selective to MFA, without interference from other common antibiotics. The limit of detection for MFA was 0.025 ng mL-1, over a linear concentration range of 0.02-30.0 ng mL-1, with a correlation coefficient of 0.994. The nano-lanthanum complex can be used successfully as a promising chemosensor for MFA determination in pharmaceutical formulation and different biological samples (whole blood-serum-plasma). In addition, this approach will protect human beings from the environmental hazards of antibiotics through the detection of the low limit of MFA. Meanwhile, the mechanism of interaction between the nano-lanthanum complex and MFA was studied and investigated.

4.
Dalton Trans ; 47(14): 4847-4855, 2018 Apr 03.
Article in English | MEDLINE | ID: mdl-29541717

ABSTRACT

Novel copper metal organic framework nanoparticles Cu-MOF-NPs (C1) were prepared via two simple alternative methods and confirmed by analytical characterization using mass, IR, Raman, XRD spectrum, HR-TEM and TGA-DSC. Mass spectroscopy revealed the molecular ion peak at 647 m/z for the monomeric unit structure n[Cu(AIP)2(PIY)(H2O)2]·4H2O, the presence of which was further supported by mass fragmentation. The Raman spectrum revealed two separate peaks corresponding to D and G bands of carbon in the structure of C1. Moreover, TGA-DSC showed the presence of CuO. XRD data were typically consistent with Raman and TGA-DSC data. In addition, HR-TEM revealed that the morphology of the C1 nanoparticles is uniform with well-distributed elliptical/spherical particles with a size range from 7 to 19 nm. The spectrophotometric and biological activity studies based on Cu-MOF-NPs were analyzed. The results indicated that Cu-MOF-NPs (C1) were successfully used as biosensors for the assessment of the triiodothyronine hormone (T3). The calibration plot was achieved over the concentration range of 40.0-100.0 ng dl-1 T3 with limits of detection (LOD) and quantitation (LOQ) of 1.46 and 4.85 ng dl-1, respectively, and a correlation coefficient (r) of 0.973. Moreover, the Cu-MOF-NPs (C1) show more enhanced biological activity against various pathogens (five strains of bacteria: Gram positive and Gram negative) when compared to an antibacterial agent and the effectiveness of Cu-MOF-NPs increases with increasing particle dose. The interactions of MOF-NPs (C1) with the biological targets were studied.


Subject(s)
Anti-Bacterial Agents/pharmacology , Biosensing Techniques/methods , Copper/chemistry , Metal Nanoparticles/chemistry , Metal-Organic Frameworks/chemistry , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/chemistry , Candida/drug effects , Chemistry Techniques, Analytical , Gram-Negative Bacteria/drug effects , Gram-Positive Bacteria/drug effects , Humans , Limit of Detection , Particle Size , Triiodothyronine/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...