Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 601
Filter
1.
MycoKeys ; 106: 173-200, 2024.
Article in English | MEDLINE | ID: mdl-38948915

ABSTRACT

Zhujiangyuan Nature Reserve, located in Qujing City, Yunnan Province, China, is reported with high fauna and floral diversity, while the fungal diversity of the region is poorly documented. During the summer season in 2023, decaying wood-inhabiting microfungi were collected from different microhabitats. The novel species were identified based on morphological characteristics and phylogenetic analyses (based on combined datasets of ITS, LSU, SSU, tef1-α, and rpb2 regions). Two species belong to Dothideomycetes (viz., Spegazziniazhujiangyuanensis sp. nov. and Phaeoseptumzhujiangyuanense sp. nov. in Pleosporales) while the other one resides in Sordariomycetes (Synnemasporellafanii sp. nov. in Diaporthales). The results are in conformity with the earlier studies that predicted higher fungal diversity in this region.

2.
World J Microbiol Biotechnol ; 40(8): 255, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38926189

ABSTRACT

Thermophilic actinomycetes are commonly found in extreme environments and can thrive and adapt to extreme conditions. These organisms exhibit substantial variation and garnered significant interest due to their remarkable enzymatic activities. This study evaluated the potential of Streptomyces griseorubens NBR14 and Nocardiopsis synnemataformans NBRM9 strains to produce thermo-stable amylase via submerged fermentation using wheat and bean straw. The Box-Behnken design was utilized to determine the optimum parameters for amylase biosynthesis. Subsequently, amylase underwent partial purification and characterization. Furthermore, the obtained hydrolysate was applied for ethanol fermentation using Saccharomyces cerevisiae. The optimal parameters for obtaining the highest amylase activity by NBR14 (7.72 U/mL) and NBRM9 (26.54 U/mL) strains were found to be 40 and 30 °C, pH values of 7, incubation time of 7 days, and substrate concentration (3 and 2 g/100 mL), respectively. The NBR14 and NBRM9 amylase were partially purified, resulting in specific activities of 251.15 and 144.84 U/mg, as well as purification factors of 3.91 and 2.69-fold, respectively. After partial purification, the amylase extracted from NBR14 and NBRM9 showed the highest activity level at pH values of 9 and 7 and temperatures of 50 and 60 °C, respectively. The findings also indicated that the maximum velocity (Vmax) for NBR14 and NBRM9 amylase were 57.80 and 59.88 U/mL, respectively, with Km constants of 1.39 and 1.479 mM. After 48 h, bioethanol was produced at concentrations of 5.95 mg/mL and 9.29 mg/mL from hydrolyzed wheat and bean straw, respectively, through fermentation with S. cerevisiae. Thermophilic actinomycetes and their α-amylase yield demonstrated promising potential for sustainable bio-ethanol production from agro-byproducts.


Subject(s)
Actinobacteria , Amylases , Ethanol , Fermentation , Saccharomyces cerevisiae , Temperature , Triticum , Ethanol/metabolism , Amylases/metabolism , Hydrogen-Ion Concentration , Kinetics , Actinobacteria/metabolism , Actinobacteria/enzymology , Saccharomyces cerevisiae/metabolism , Hydrolysis , Streptomyces/enzymology , Streptomyces/metabolism , Enzyme Stability
3.
Colloids Surf B Biointerfaces ; 241: 114015, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38878658

ABSTRACT

The primary emphasis of this study was on the innovative and scientifically valuable hydrothermal synthesis of MIL-101(Co) as a metal-organic framework (MOF) material. Subsequently, the CuFe2O4 was incorporated into the MOF by a reduction-precipitation technique. The SrTiO3/CuFe2O4/MIL-101(Co) composite was synthesized by using hydrothermal in situ growth process. The XRD and FESEM investigations of the SrTiO3/CuFe2O4/MIL-101(Co) composite definitively verified its crystalline structure and proved its production with exact shape and dimensions. The data indicated that Candida albicans displayed the greatest vulnerability to all three produced materials, with reported Minimum Inhibitory Concentration (MIC) values of 500 µg mL-1 for MIL-101(Co). The CuFe2O4/MIL-101(Co) compound, when produced, exhibits MIC values of 200 µg mL-1. Additionally, the combination of CuFe2O4/MIL-101(Co) with SrTiO3, shows MIC values of 50 µg mL-1. The results also indicated that the MIC values for MIL-101(Co), and CuFe2O4/MIL-101(Co) against S. aureus were 100 µg mL-1. Ultimately, SrTiO3/CuFe2O4/MIL-101(Co) exhibited identical MIC values of 50 µg mL-1 against S. aureus. The concentration of the bacterial protein was increased by adding MIL-101(Co), CuFe2O4/MIL-101(Co), and SrTiO3/CuFe2O4/MIL-101(Co). The antibacterial capabilities of the SrTiO3/CuFe2O4/MIL-101(Co) were increased after being subjected to gamma doses of 100.0 kGy. This process paves a ways for manufacturing innovation in near future.

4.
Adv Sci (Weinh) ; : e2307695, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38885414

ABSTRACT

Cancer cells must develop strategies to adapt to the dynamically changing stresses caused by intrinsic or extrinsic processes, or therapeutic agents. Metabolic adaptability is crucial to mitigate such challenges. Considering metabolism as a central node of adaptability, it is focused on an energy sensor, the AMP-activated protein kinase (AMPK). In a subtype of pancreatic ductal adenocarcinoma (PDAC) elevated AMPK expression and phosphorylation is identified. Using drug repurposing that combined screening experiments and chemoproteomic affinity profiling, it is identified and characterized PF-3758309, initially developed as an inhibitor of PAK4, as an AMPK inhibitor. PF-3758309 shows activity in pre-clinical PDAC models, including primary patient-derived organoids. Genetic loss-of-function experiments showed that AMPK limits the induction of ferroptosis, and consequently, PF-3758309 treatment restores the sensitivity toward ferroptosis inducers. The work established a chemical scaffold for the development of specific AMPK-targeting compounds and deciphered the framework for the development of AMPK inhibitor-based combination therapies tailored for PDAC.

5.
Environ Res ; 257: 119328, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38851369

ABSTRACT

The growing effects of climate change on Malaysia's coastal ecology heighten worries about air pollution, specifically caused by urbanization and industrial activity in the maritime sector. Trucks and vessels are particularly noteworthy for their substantial contribution to gas emissions, including nitrogen dioxide (NO2), which is the primary gas released in port areas. The application of advanced analysis techniques was spurred by the air pollution resulting from the combustion of fossil fuels such as fuel oil, natural gas and gasoline in vessels. The study utilized satellite photos captured by the Tropospheric Monitoring Instrument (TROPOMI) on the Sentinel-5P satellite to evaluate the levels of NO2 gas pollution in Malaysia's port areas and exclusive economic zone. Before the COVID-19 pandemic, unrestricted gas emissions led to persistently high levels of NO2 in the analyzed areas. The temporary cessation of marine industry operations caused by the pandemic, along with the halting of vessels to prevent the spread of COVID-19, resulted in a noticeable decrease in NO2 gas pollution. In light of these favourable advancements, it is imperative to emphasize the need for continuous investigation and collaborative endeavours to further alleviate air contamination in Malaysian port regions, while simultaneously acknowledging the wider consequences of climate change on the coastal ecology. The study underscores the interdependence of air pollution, maritime activities and climate change. It emphasizes the need for comprehensive strategies that tackle both immediate environmental issues and the long-term sustainability and resilience of coastal ecosystems in the context of global climate challenges.

6.
J Chem Phys ; 160(24)2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38912625

ABSTRACT

In this work, pure and S-N/WO3 (1%-7%) nanoparticles (NPs) have been developed for the degradation of MB dye. Optical properties, vibrational analysis, morphology, structural analysis, and photocatalytic activity of the samples have been evaluated using a variety of characterization techniques, including UV-vis, PL, FTIR, SEM, and x-ray diffraction (XRD). The XRD patterns showed that the stability of the orthorhombic phase of WO3 was affected by the concentrations of S and N. In SEM, nanospheres with an average size of 80 nm of NPs have been observed. The PL results showed that the e-, h+ recombination rate for the S-N7%/WO3 sample was the lowest. The degradation of MB dye has also been investigated in order to investigate the photocatalytic performance. Remarkably, S-N7%/WO3 shows the best results, with a maximum degradation of 90% in 120 min. The stability of the improved catalyst was tested using recycling and trapping studies. S-N7%/WO3 catalyst's exceptional photocatalytic activity highlights its potential use in wastewater treatment. This study will be helpful for manufacturing innovation.

7.
Mar Pollut Bull ; 203: 116390, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38701600

ABSTRACT

Multivariate pollution degree indices were utilized to evaluate the environmental condition of the Uppanar and Vellar estuaries. The Trophic Index (TRIX) indicates a state of "moderate eutrophication" with a value of 4.92, while the Trophic State Index (TSI) ranged from 40.3 to 57.2, categorizing the trophic states from "oligotrophic" to "eutrophic". The Comprehensive Pollution Index (CPI) showed a range of 0.13 to 0.94, classifying pollution levels from "unpolluted" to "slightly polluted". The study revealed that the Uppanar and Vellar estuaries underwent seasonal variations, transitioning from an oligotrophic state during the post-monsoon and summer periods to a eutrophic state in the pre-monsoon and monsoon seasons. The application of multivariate statistical tools allowed the identification of pollution indicator species to assess the estuarine systems. The insights gained from this study can be valuable for assessing other ecosystems facing similar anthropogenic activities, providing a basis for informed management and conservation strategies.


Subject(s)
Environmental Monitoring , Estuaries , Eutrophication , Ecosystem , Seasons , Multivariate Analysis , Animals , Water Pollution/statistics & numerical data
9.
Sci Rep ; 14(1): 11042, 2024 05 14.
Article in English | MEDLINE | ID: mdl-38745058

ABSTRACT

Nickel (Ni) is a heavy metal that adversely affects the growth of different crops by inducing oxidative stress and nutrient imbalance. The role of rhizobacteria (RB) is vital to resolve this issue. They can promote root growth and facilitate the uptake of water and nutrients, resulting in better crop growth. On the other hand, γ-aminobutyric acid (GABA) can maintain the osmotic balance and scavenge the reactive oxygen species under stress conditions. However, the combined effect of GABA and RB has not been thoroughly explored to alleviate Ni toxicity, especially in fenugreek plants. Therefore, in the current pot study, four treatments, i.e., control, A. fabrum (RB), 0.40 mM GABA, and 0.40 mM GABA + RB, were applied under 0Ni and 80 mg Ni/kg soil (80Ni) stress. Results showed that RB + 0.40 mM GABA caused significant improvements in shoot length (~ 13%), shoot fresh weight (~ 47%), shoot dry weight (~ 47%), root length (~ 13%), root fresh weight (~ 60%), and root dry weight (~ 15%) over control under 80 Ni toxicity. A significant enhancement in total chlorophyll (~ 14%), photosynthetic rate (~ 17%), stomatal CO2 concentration (~ 19%), leaves and roots N (~ 10 and ~ 37%), P (~ 18 and ~ 7%) and K (~ 11 and ~ 30%) concentrations, while a decrease in Ni (~ 83 and ~ 49%) concentration also confirmed the effectiveness of RB + 0.40 mM GABA than control under 80Ni. In conclusion, fabrum + 0.40 mM GABA can potentially alleviate the Ni toxicity in fenugreek plants. The implications of these findings extend to agricultural practices, environmental remediation efforts, nutritional security, and ecological impact. Further research is recommended to elucidate the underlying mechanisms, assess long-term effects, and determine the practical feasibility of using A. fabrum + 0.40GABA to improve growth in different crops under Ni toxicity.


Subject(s)
Nickel , Trigonella , gamma-Aminobutyric Acid , Nickel/toxicity , gamma-Aminobutyric Acid/metabolism , Plant Roots/drug effects , Plant Roots/growth & development , Plant Roots/metabolism , Soil Pollutants/toxicity
10.
Saudi Pharm J ; 32(5): 102062, 2024 May.
Article in English | MEDLINE | ID: mdl-38601975

ABSTRACT

This research describes the synthesis by an environmentally-friendly method, microwave irradiation, development and analysis of three novel and one previously identified Schiff base derivative as a potential inhibitor of bovine xanthine oxidase (BXO), a key enzyme implicated in the progression of gout. Meticulous experimentation revealed that these compounds (10, 9, 4, and 7) have noteworthy inhibitory effects on BXO, with IC50 values ranging from 149.56 µM to 263.60 µM, indicating their good efficacy compared to that of the standard control. The validation of these results was further enhanced through comprehensive in silico studies, which revealed the pivotal interactions between the inhibitors and the catalytic sites of BXO, with a particular emphasis on the imine group (-C = N-) functionalities. Intriguingly, the compounds exhibiting the highest inhibition rates also showcase advantageous ADMET profiles, alongside encouraging initial assessments via PASS, hinting at their broad-spectrum potential. The implications of these findings are profound, suggesting that these Schiff base derivatives not only offer a new vantage point for the inhibition of BXO but also hold considerable promise as innovative therapeutic agents in the management and treatment of gout, marking a significant leap forward in the quest for more effective gout interventions.

11.
ACS Omega ; 9(15): 17137-17142, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38645367

ABSTRACT

In certain low-income nations, the hepatitis Delta virus and hepatitis B virus (HBV) pose a serious medical burden, where the prevalence of hepatitis B surface antigen (HBsAg) is greater than 8%. Especially in rural places, irregular diagnostic exams are the main restriction and reason for underestimation. Utilizing serum samples from a Pakistani isolate, an internal ELISA for the quick identification of anti-HDV was created, and the effectiveness of the test was compared to a commercial diagnostic kit. HDV-positive serum samples were collected, and a highly antigenic domain of HDAg antigen was derived from them. This antigenic HDAg was expressed in a bacterial expression system, purified by Ni-chromatography, and confirmed by SDS-PAGE and Western blot analysis. The purified antigen was utilized to develop an in-house ELISA assay for anti-HDV antibody detection of the patient's serum samples at very low cost. Purified antigens and positive and negative controls can detect anti-HDV (antibodies) in ELISA plates. The in-house developed kit's efficiency was compared with that of a commercial kit (Witech Inc., USA) by the mean optical density values of both kits. No significant difference was observed (a P value of 0.576) by applying statistical analysis. The newly developed in-house ELISA is equally efficient compared to commercial kits, and these may be useful in regular diagnostic laboratories, especially for analyzing local isolates.

12.
MycoKeys ; 104: 113-132, 2024.
Article in English | MEDLINE | ID: mdl-38665974

ABSTRACT

Morphological comparisons and multi locus phylogenetic analyses (base on the combined genes of ITS, LSU, rpb2 and tub) demonstrated that three new saprobic taxa isolated from bamboo belong to Cainiaceae. These taxa comprise a novel genus Paramphibambusa (P.bambusicolasp. nov.) and two new species, Arecophilaxishuangbannaensis and A.zhaotongensis. The three new taxa belong to Cainiaceae (Xylariales, Sordariomycetes) a poorly studied family, which now comprises eight genera. Paramphibambusa can be distinguished from other Cainiaceae genera in having ascomata with a neck and ascospores lacking longitudinal striation, germ slits or germ pores. The two new Arecophila species clustered in a clade with Arecophila sp. and A.bambusae. Detailed morphological descriptions, illustrations, and an updated phylogenetic tree are provided for the new taxa.

13.
Environ Res ; 252(Pt 3): 118858, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38609066

ABSTRACT

Crucial to the Earth's oceans, ocean currents dynamically react to various factors, including rotation, wind patterns, temperature fluctuations, alterations in salinity and the gravitational pull of the moon. Climate change impacts coastal ecosystems, emphasizing the need for understanding these currents. This study explores multibeam echosounder (MBES), specifically R2-Sonic 2020 instrument, offering detailed seabed information. Investigating coral reefs, rocky reefs and artificial reefs aimed to map seafloor currents movement and their climate change responses. MBES data viz. Bathymetry and backscatter were classified and acoustic doppler current profiler (ADCP) ground data were validated using random forest regression. Results indicated high precision in currents speed measurement i.e. coral reefs with 0.96, artificial reefs with 0.94 and rocky reefs with 0.97. Currents direction accuracy was notable in coral reefs with 0.85, slightly lower in rocky reefs with 0.72 and artificial reefs with 0.60. Random forest identified sediment and backscatter as key for speed prediction while direction relies on bathymetry, slope and aspect. The study emphasizes integrating sediment size, backscatter, bathymetry and ADCP data for seafloor current analysis. This multibeam data on sediments and currents support better marine spatial planning and determine biodiversity patterns planning in the reef area.


Subject(s)
Climate Change , Coral Reefs , Water Movements , Environmental Monitoring/methods , Acoustics , Doppler Effect
14.
PLoS Biol ; 22(4): e3002607, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38687811

ABSTRACT

Unbiased data-driven omic approaches are revealing the molecular heterogeneity of Alzheimer disease. Here, we used machine learning approaches to integrate high-throughput transcriptomic, proteomic, metabolomic, and lipidomic profiles with clinical and neuropathological data from multiple human AD cohorts. We discovered 4 unique multimodal molecular profiles, one of them showing signs of poor cognitive function, a faster pace of disease progression, shorter survival with the disease, severe neurodegeneration and astrogliosis, and reduced levels of metabolomic profiles. We found this molecular profile to be present in multiple affected cortical regions associated with higher Braak tau scores and significant dysregulation of synapse-related genes, endocytosis, phagosome, and mTOR signaling pathways altered in AD early and late stages. AD cross-omics data integration with transcriptomic data from an SNCA mouse model revealed an overlapping signature. Furthermore, we leveraged single-nuclei RNA-seq data to identify distinct cell-types that most likely mediate molecular profiles. Lastly, we identified that the multimodal clusters uncovered cerebrospinal fluid biomarkers poised to monitor AD progression and possibly cognition. Our cross-omics analyses provide novel critical molecular insights into AD.


Subject(s)
Alzheimer Disease , Brain , Alzheimer Disease/metabolism , Alzheimer Disease/genetics , Alzheimer Disease/pathology , Humans , Animals , Brain/metabolism , Brain/pathology , Mice , Transcriptome/genetics , Proteomics/methods , Male , Biomarkers/metabolism , Metabolomics/methods , Machine Learning , Female , Disease Progression , Aged , Disease Models, Animal , Multiomics
15.
MycoKeys ; 103: 71-95, 2024.
Article in English | MEDLINE | ID: mdl-38560534

ABSTRACT

The tropical areas in southern and south-western Yunnan are rich in fungal diversity. Additionally, the diversity of seed flora in Yunnan Province is higher than in other regions in China and the abundant endemic species of woody plants provide favourable substrates for fungi. Rubber plantations in Yunnan Province are distributed over a large area, especially in Xishuangbanna. During a survey of rubber-associated fungi in Yunnan Province, China, dead rubber branches with fungal fruiting bodies were collected. Morphological characteristics and multigene phylogenetic analyses (ITS, LSU, SSU, rpb2 and tef1-α) revealed four distinct new species, described herein as Melomastiapuerensis, Nigrogranalincangensis, Pseudochaetosphaeronemalincangensis and Pseudochaetosphaeronemaxishuangbannaensis. Detailed descriptions, illustrations and phylogenetic trees are provided to show the taxonomic placements of these new species.

16.
Front Plant Sci ; 15: 1255979, 2024.
Article in English | MEDLINE | ID: mdl-38481405

ABSTRACT

Background: Brassica oleracea var. botrytis is an annual or biennial herbaceous vegetable plant in the Brassicaceae family notable for its edible blossom head. A lot of effort has gone into finding defense-associated proteins in order to better understand how cauliflower and pathogens interact. Endophytes are organisms that live within the host plant and reproduce. Endophytes are bacteria and fungi that reside in plant tissues and can either help or harm the plant. Several species have aided molecular biologists and plant biotechnologists in various ways. Water is essential for a healthy cauliflower bloom. When the weather is hot, this plant dries up, and nitrogen scarcity can be detrimental to cauliflower growth. Objective: The study sought to discern plant growth promoting (PGP) compounds that can amplify drought resilience and boost productivity in cauliflower. Methods: Investigations were centered on endophytes, microorganisms existing within plant tissues. The dual role of beneficial and detrimental Agrobacterium was scrutinized, particularly emphasizing the ethylene precursor compound, 1-amino-cyclopropane-1-carboxylic acid (ACCA). Results: ACCA possessed salient PGP traits, particularly demonstrating a pronounced enhancement of drought resistance in cauliflower plants. Specifically, during the pivotal marketable curd maturity phase, which necessitates defense against various threats, ACCA showcased a binding energy of -8.74 kcal/mol. Conclusion: ACCA holds a significant promise in agricultural productivity, with its potential to boost drought resistance and cauliflower yield. This could be particularly impactful for regions grappling with high temperatures and possible nitrogen shortages. Future research should explore ACCA's performance under diverse environmental settings and its applicability in other crops.

17.
Mol Oncol ; 2024 Mar 22.
Article in English | MEDLINE | ID: mdl-38520049

ABSTRACT

Mammalian cells replicate ~ 3 × 109 base pairs per cell cycle. One of the key molecules that slows down the cell cycle and prevents excessive DNA damage upon DNA replication stress is the checkpoint kinase ataxia-telangiectasia-and-RAD3-related (ATR). Proteolysis-targeting-chimeras (PROTACs) are an innovative pharmacological invention to molecularly dissect, biologically understand, and therapeutically assess catalytic and non-catalytic functions of enzymes. This work defines the first-in-class ATR PROTAC, Abd110/Ramotac-1. It is derived from the ATR inhibitor VE-821 and recruits the E3 ubiquitin-ligase component cereblon to ATR. Abd110 eliminates ATR rapidly in human leukemic cells. This mechanism provokes DNA replication catastrophe and augments anti-leukemic effects of the clinically used ribonucleotide reductase-2 inhibitor hydroxyurea. Moreover, Abd110 is more effective than VE-821 against human primary leukemic cells but spares normal primary immune cells. CRISPR-Cas9 screens show that ATR is a dependency factor in 116 myeloid and lymphoid leukemia cells. Treatment of wild-type but not of cereblon knockout cells with Abd110 stalls their proliferation which verifies that ATR elimination is the primary mechanism of Abd110. Altogether, our findings demonstrate specific anti-leukemic effects of an ATR PROTAC.

18.
Luminescence ; 39(4): e4725, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38532614

ABSTRACT

Erythrosine B (EB) is a food colorant antiviral xanthene dye that has many applications as a color additive in pharmaceuticals and cosmetics. Its use as a sensor for spectrofluorimetric and spectrophotometric analysis of amine-based pharmaceuticals renders many advantages because of its availability, low cost, rapid labeling, and high sensitivity. Herein, two fast and sensitive spectrofluorimetric and spectrophotometric methods were established for the estimation of the anti-Parkinson drug, biperiden (BIP) hydrochloride (HCl), in its raw material and tablet forms. The proposed methods depended on the interaction between the phenolic group of EB and the tertiary amino group of the studied analyte to form an ion-pair complex at pH 4 using the Britton Robinson buffer. The spectrofluorimetric method is based on the measurement of the quenching power of BIP HCl on the fluorescence intensity of EB at λex/em = 527.0/550.9 nm. This method was rectilinear over the concentration range of 0.1-1.0 µg/mL with a limit of detection (LOD) = 0.017 µg/mL and a limit of quantification (LOQ) = 0.05 µg/mL. Meanwhile, the colorimetric method involved monitoring the absorbance of the formed ion-pair complex at 555 nm, showing a linearity range of 0.4-5.0 µg/mL with LOD = 0.106 µg/mL and LOQ = 0.322 µg/mL. The proposed methods were assessed for the greenness, indicating the greenness of the developed methods.


Subject(s)
Biperiden , Erythrosine , Spectrometry, Fluorescence/methods , Tablets , Limit of Detection
19.
Cureus ; 16(2): e54890, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38544659

ABSTRACT

The study aims to present 11 immediately placed implants in posterior extraction sockets applying the dual-zone therapeutic concept. Five patients with non-restorable molars or premolars were treated with single or multiple immediate implants after atraumatic tooth extraction using a piezotome. The dual-zone therapeutic concept included grafting the jumping gap adjacent to the implant up to the gingival margin with a bovine xenograft. A screw-retained customized healing abutment was used to allow healing, and the implant loading was delayed for four to six months. All the patients were followed up for three years. Surgical complications, implant or prosthesis loss, and peri-implant marginal tissue health were assessed annually. No surgical complications or implant loss were observed during the follow-up visits. Peri-implant marginal tissue health showed excellent results with minimal marginal bone loss. Bone gain was evident in some cases. Using the dual-zone therapeutic concept with immediate implant placement in posterior extraction sockets showed promising results over three years.

20.
Biomater Adv ; 159: 213823, 2024 May.
Article in English | MEDLINE | ID: mdl-38460353

ABSTRACT

Lung cancer, one of the most common causes of high mortality worldwide, still lacks appropriate and convenient treatment options. Photodynamic therapy (PDT) has shown promising results against cancer, especially in recent years. However, pulmonary drug delivery of the predominantly hydrophobic photosensitizers still represents a significant obstacle. Nebulizing DPPC/Cholesterol liposomes loaded with the photosensitizer curcumin via a vibrating mesh nebulizer might overcome current restrictions. In this study, the liposomes were prepared by conventional thin-film hydration and two other methods based on dual centrifugation. The liposomes' physicochemical properties were determined before and after nebulization, showing that liposomes do not undergo any changes. However, morphological characterization of the differently prepared liposomes revealed structural differences between the methods in terms of lamellarity. Internalization of curcumin in lung adenocarcinoma (A549) cells was visualized and quantified. The generation of reactive oxygen species because of the photoreaction was also proven. The photodynamic efficacy of the liposomal formulations was tested against A549 cells. They revealed different phototoxic responses at different radiant exposures. Furthermore, the photodynamic efficacy was investigated after nebulizing curcumin-loaded liposomes onto xenografted tumors on the CAM, followed by irradiation, and evaluated using positron emission tomography/computed tomography and histological analysis. A decrease in tumor metabolism could be observed. Based on the efficacy of curcumin-loaded liposomes in 2D and 3D models, liposomes, especially with prior film formation, can be considered a promising approach for PDT against lung cancer.


Subject(s)
Curcumin , Lung Neoplasms , Humans , Liposomes/therapeutic use , Curcumin/pharmacology , Curcumin/therapeutic use , Drug Delivery Systems , Nebulizers and Vaporizers , Photosensitizing Agents/therapeutic use , Lung Neoplasms/drug therapy , Lung Neoplasms/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...