Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Publication year range
1.
Rev. chil. neurocir ; 37: 11-18, jul. 2011. ilus, tab
Article in Spanish | LILACS | ID: lil-708070

ABSTRACT

El objetivo del tratamiento quirúrgico de los pacientes aquejados de disrrafia espinal es mantener su función neurológica estable y óptima durante toda su vida, sin embargo, existe un riesgo importante implícito en la cirugía. Con el objeto de investigar el impacto del monitoreo electrofisiológico intraoperatorio (MIO) en la evolución postoperatoria de estos pacientes, el cirujano practicó electromiografía libre y estimulada como retroalimentación continua del procedimiento. Las patologías operadas fueron: lipomas del fillum, lipomas del cono medular y re-anclajes de pacientes portadores de mielomeningocele al nacer. En todas las patologías se comparó la evolución post-operatoria con grupos de pacientes operados sin MIO, con el objeto de comparar sus evoluciones. Se observaron diferencias significativas entre los tres grupos de pacientes el uso de MIO evita el deterioro motor y la aparición de vejiga neurogénica en pacientes operados de lipoma del cono, evita la inclusión de raíces nerviosas en la sección del Fillum y evita el deterioro motor y ayuda a mejorar la función vesical de pacientes que se operan por re-anclaje medular por mielomeningocele. Finalmente, fue posible aplicar esta técnica en recién nacidos con mielomeningocele bajo, desarrollándose un protocolo que evita de facto el deterioro motor y debería evitar la inclusión de piel durante la tunelización de la placoda. Los datos mostrados en el presente trabajo permiten afirmar que esta técnica, por primera vez desarrollada en el sistema público chileno, así aplicada mejora muy significativamente los resultados de la cirugía de disrrafia espinal.


Subject(s)
Humans , Infant, Newborn , Spinal Dysraphism/surgery , Electromyography , Lipoma , Meningomyelocele/surgery , Monitoring, Physiologic/instrumentation , Postoperative Period , Chile
2.
J Evol Biol ; 24(4): 843-55, 2011 Apr.
Article in English | MEDLINE | ID: mdl-21255177

ABSTRACT

The central tenet of ecomorphological theory holds that different ecological requirements lead to different organismal designs (morphology). Here, we studied the relationships between performance (interlocking grasping) and forelimb morphological traits in species of lizards that exploit different structural habitats in a phylogenetic context. The performance (measured by the maximum force of clinging to substrate) was measured on different substrate types. After phylogenetically informed analyses, we found that arboreal and saxicolous species showed stronger resistance to mechanical traction in all substrates when compared to generalists and sand dweller lizards. These species showed a positive relationship between forelimb dimensions (humerus length and length of claw of toe 5) and maximum force exerted, on the contrary, hand width, claw height (CH) of digits III and IV and claw length of toe 4 showed a negative relationship. In addition, we observed a partial positive correlation between CH and maximal cling force on rough surfaces, but not on smooth surfaces.


Subject(s)
Ecosystem , Lizards/anatomy & histology , Lizards/physiology , Animals , Forelimb/anatomy & histology , Hoof and Claw/anatomy & histology , Lizards/classification , Phylogeny
3.
Zoology (Jena) ; 112(5): 379-92, 2009.
Article in English | MEDLINE | ID: mdl-19632100

ABSTRACT

Traditionally, it has been suggested that variation in locomotor mode should be correlated with variation in the anatomy of the structures responsible for locomotion. Indeed, organisms can expand their ecological niche by using specialized traits of the locomotor system including hooks, claws, adhesive pads, etc. Despite the fact that claws are the most common biological mechanism of clinging in vertebrates, little is known about their function or evolutionary relationship to habitat use. The present study focuses on claw morphology in 57 species of iguanian lizards occupying different microhabitats. Qualitative differences in claw shape were explored by means of digital photographs, and quantitative measurements of the length, height and curvature of the claws of both fingers and toes were taken and correlated to information on microhabitat use obtained from the literature. Our analyses showed a strong phylogenetic component that obscured relationships between morphology and ecology. Our results also show differences in claw morphology between species that appear to be related to microhabitat use (climbing versus terrestrial species), with the best ecological descriptors being claw length and height. Performance measures and biomechanical analyses of claw function may consequently be better suited to explain the evolution of claw shape in relation to habitat use in this group.


Subject(s)
Behavior, Animal , Ecosystem , Hoof and Claw/anatomy & histology , Iguanas/anatomy & histology , Animals , Locomotion , Phylogeny , Tropical Climate
4.
J Anat ; 214(5): 694-716, 2009 May.
Article in English | MEDLINE | ID: mdl-19438764

ABSTRACT

In a recent study Diogo & Abdala [(2007) J Morphol 268, 504-517] reported the results of the first part of a research project on the comparative anatomy, homologies and evolution of the pectoral muscles of osteichthyans (bony fish and tetrapods). That report mainly focused on actinopterygian fish but also compared these fish with certain non-mammalian sarcopterygians. This study, which reports the second part of the research project, focuses mainly on sarcopterygians and particularly on how the pectoral and forelimb muscles have evolved during the transitions from sarcopterygian fish and non-mammalian tetrapods to monotreme and therian mammals and humans. The data obtained by our own dissections of all the pectoral and forelimb muscles of representative members of groups as diverse as sarcopterygian fish, amphibians, reptiles, monotremes and therian mammals such as rodents, tree-shrews, colugos and primates, including humans, are compared with the information available in the literature. Our observations and comparisons clearly stress that, with regard to the number of pectoral and forelimb muscles, the most striking transition within sarcopterygian evolutionary history was that leading to the origin of tetrapods. Whereas extant sarcopterygian fish have an abductor and adductor of the fin and a largely undifferentiated hypaxial and epaxial musculature, extant salamanders such as Ambystoma have more than 40 pectoral and forelimb muscles. There is no clear increase in the number of pectoral and forelimb muscles within the evolutionary transition that led to the origin of mammals and surely not to that leading to the origin of primates and humans.


Subject(s)
Biological Evolution , Extremities/anatomy & histology , Fishes/anatomy & histology , Mammals/anatomy & histology , Pectoralis Muscles/anatomy & histology , Anatomy, Comparative/methods , Animals , Fishes/classification , Fishes/genetics , Fossils , Humans , Mammals/classification , Mammals/genetics , Phylogeny
5.
J Anat ; 213(4): 391-424, 2008 Oct.
Article in English | MEDLINE | ID: mdl-18657257

ABSTRACT

In a recent paper Diogo (2008) reported the results of the first part of an investigation of the comparative anatomy, homologies and evolution of the head and neck muscles of osteichthyans (bony fish + tetrapods). That report mainly focused on actinopterygian fish, but also compared these fish with certain non-mammalian sarcopterygians. The present paper focuses mainly on sarcopterygians, and particularly on how the head and neck muscles have evolved during the transitions from sarcopterygian fish and non-mammalian tetrapods to monotreme and therian mammals, including modern humans. The data obtained from our dissections of the head and neck muscles of representative members of sarcopterygian fish, amphibians, reptiles, monotremes and therian mammals, such as rodents, tree-shrews, colugos and primates, including modern humans, are compared with the information available in the literature. Our observations and comparisons indicate that the number of mandibular and true branchial muscles (sensu this work) present in modern humans is smaller than that found in mammals such as tree-shrews, rats and monotremes, as well as in reptiles such as lizards. Regarding the pharyngeal musculature, there is an increase in the number of muscles at the time of the evolutionary transition leading to therian mammals, but there was no significant increase during the transition leading to the emergence of higher primates and modern humans. The number of hypobranchial muscles is relatively constant within the therian mammals we examined, although in this case modern humans have more muscles than other mammals. The number of laryngeal and facial muscles in modern humans is greater than that found in most other therian taxa. Interestingly, modern humans possess peculiar laryngeal and facial muscles that are not present in the majority of the other mammalian taxa; this seems to corroborate the crucial role played by vocal communication and by facial expressions in primate and especially in human evolution. It is hoped that by compiling, in one paper, data about the head and neck muscles of a wide range of sarcopterygians, the present work could be useful to comparative anatomists, evolutionary biologists and functional morphologists and to researchers working in other fields such as developmental biology, genetics and/or evolutionary developmental biology.


Subject(s)
Biological Evolution , Fishes/anatomy & histology , Mammals/anatomy & histology , Muscles/anatomy & histology , Anatomy, Comparative , Animals , Facial Muscles/anatomy & histology , Head , Humans , Masticatory Muscles/anatomy & histology , Neck Muscles/anatomy & histology , Phylogeny
SELECTION OF CITATIONS
SEARCH DETAIL
...