Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 100
Filter
1.
Discov Oncol ; 15(1): 282, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39008141

ABSTRACT

This study on Buddleja polystachya highlights its phytochemical composition, antimicrobial activity, and cytotoxic impacts. The study emphasizes the plant's potential to treat ocular diseases by identifying important compounds involved in the bioactivity through GC-MS analysis. This study explores the antimicrobial and cytotoxic potential of Buddleja polystachya (stem and leaves) extracts, with a focus on their application in treating bacterial ocular infections and their efficacy against MCF7, HT29, and HepG2 cancer cells. Through comprehensive GC-MS analysis, a diverse array of phytochemicals was identified within Buddleja polystachya stem and leaves extracts, including carbohydrates, phenolic derivatives, fatty acids, and steroidal components. The extracts were then evaluated for their biological activities, revealing significant antimicrobial properties against a range of bacterial strains implicated in ocular infections. The research findings demonstrate that stem extracts derived from Buddleja polystachya demonstrated high to moderate cytotoxic effects on cancer cell lines MCF7, HT29, and HepG2. Notably, these effects were characterized by varying IC50 values, which suggest distinct levels of sensitivity. In contrast, leaf extracts exhibited reduced cytotoxicity when tested against all these cell lines, although they did so with a significantly higher cytotoxicity aganist HepG2 cells. The results of this investigation highlight the potential therapeutic utilization of Buddleja polystachya extracts in the management of ocular infections and cancer. These results support the need for additional research to elucidate the underlying mechanisms of action of these extracts and explore their potential as drugs.

2.
Biomed Pharmacother ; 177: 117072, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38991301

ABSTRACT

The development of natural substances derived from nature poses a significant challenge as technologies for the extraction and characterization of active principles advance. Hispolon has received a lot of attention in recent years, ascribable to its wide range of biological activities. It is a phenolic molecule that was extracted from several mushroom species such as Phellinus igniarius, Phellinus linteus, Phellinus lonicerinus, Phellinus merrillii, and Inonotus hispidus. To provide a comprehensive overview of the pharmacological activities of hispolon, this review highlights its anticancer, anti-inflammatory, antioxidant, antibacterial, and anti-diabetic activities. Several scientific research databases, including Google Scholar, Web of Science, PubMed, SciFinder, SpringerLink, Science Direct, Scopus, and, Wiley Online were used to gather the data on hispolon until May 2024. The in vitro and in vivo studies have revealed that hispolon exhibited significant anticancer properties through modifying several signaling pathways including cell apoptosis, cycle arrest, autophagy, and inhibition of angiogenesis and metastasis. Hispolon's antimicrobial activity was proven against many bacterial, fungal, and viral pathogens, highlighting its potential use as a novel antimicrobial agent. Additionally, hispolon displayed potent anti-inflammatory activity through the suppression of key inflammatory mediators, such as inducible NO synthase (iNOS), tumor necrosis factor-α (TNF-α), and cyclooxygenases-2 (COX-2), and the modulation of mitogen-activated protein kinases (MAPK) and nuclear factor kappa B (NF-κB) signaling pathways. The antioxidant potential of hispolon was attributed to its capacity to neutralize reactive oxygen species (ROS) and to increase the activity of antioxidant enzymes, indicating a possible involvement in the prevention of oxidative stress-related illnesses. Hispolon's antidiabetic activity was associated with the inhibition of aldose reductase and α-glucosidase. Studies on hispolon emphasized its potential use as a promising scaffold for the development of novel therapeutic agents targeting various diseases, including cancer, infectious diseases, inflammatory disorders, and diabetes.

3.
Int J Health Sci (Qassim) ; 18(4): 14-21, 2024.
Article in English | MEDLINE | ID: mdl-38974648

ABSTRACT

Objective: Dasatinib-(DAS) is a tyrosine kinase inhibitor usually used to treat leukemia. However, DAS is a poorly water-soluble drug. Therefore, oil-in-water emulsions were used for DAS to enhance its solubility and cancer treatment efficacy. This study aims to develop an appropriate DAS nanoemulsion (NE) that can overcome the issue of DAS solubility and provide an effective anticancer effect. Methods: Spherical particles dispersed in an aqueous media approach within an oily phase (oleic acid, Kolliphor RH40, and dipropylene glycol) were used to formulate DAS-NE using high-energy methods. Different formulas were developed and an appropriate formula was analyzed to identify its physicochemical properties. Raw DAS and nonformula cytotoxicity were evaluated through MTT assay against three cancer cell lines, MCF7 (human breast adenocarcinoma), HT29, and SW480 (human colorectal carcinomas), in addition to MRC5 (Normal human fetal lung fibroblast). Results: Different DAS-NEs (1-7) have been developed successfully. Formulas had a droplet size of a diameter ranging from 84.167 ± 10.178 nm to 273.433 ± 45.267 nm. The drug content of the appropriate formula (DAS-NE3) was found to be 83.2%. The drug release result of DAS-NE3 when compared to raw DAS was about 58%, falling to 13% after 24 h. The DAS-NE3 showed cytotoxicity against the three cancer cells below 26.11 µM but showed 30-fold significantly increased selectivity against MRC5 normal cells compared to that of raw DAS. Conclusion: This study shows that the DAS-NE3 formula may provide a potentially effective and sustained drug delivery for cancer treatment. This provides valuable information to the scientific community and the pharmaceutical industry.

4.
Biomed Pharmacother ; : 116886, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38945700

ABSTRACT

Colorectal cancer (CRC) is one of the most significant forms of human cancer. It is characterized by its heterogeneity because several molecular factors are involved in contiguity and can link it to others without having a linear correlation. Among the factors influencing tumor transformation in CRC, transforming growth factor-beta (TGF-ß) plays a key promoter role. This factor is associated with human colorectal tumors with a very high prognosis: it increases the survival, invasion, and metastasis of CRC cells, thus functioning as an oncogene. The inhibition of this factor can constitute a major therapeutic route for CRC treatment. Various chemical drugs including synthetic molecules and biotherapies have been developed as TGF-ß inhibitors. Moreover, the scientific community has recently shown a major interest in screening natural drugs inhibiting TGF-ß in CRC. In this context, we carried out this review article using computerized databases, such as PubMed, Google Scholar, Springer Link, Science Direct, Cochrane Library, Embase, Web of Science, and Scopus, to highlight the molecular mechanism of TGF-ß in CRC induction and progression and current advances in the pharmacodynamic effects of natural bioactive substances targeting TGF-ß in CRC.

5.
Nat Prod Bioprospect ; 14(1): 27, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38722432

ABSTRACT

Until recently, the main pharmaceuticals used to control cholesterol and prevent cardiovascular disease (CVD) were statin-related drugs, known for their historical side effects. Therefore, there is growing interest in exploring alternatives, such as nutritional and dietary components, that could play a central role in CVD prevention. This review aims to provide a comprehensive understanding of how natural phytosterols found in various diets combat CVDs. We begin with a description of the overall approach, then we explore in detail the different direct and indirect mechanisms that contribute to reducing cardiovascular incidents. Phytosterols, including stigmasterol, ß-sitosterol, ergosterol, and fucosterol, emerge as promising molecules within nutritional systems for protection against CVDs due to their beneficial effects at different levels through direct or indirect cellular, subcellular, and molecular mechanisms. Specifically, the mentioned phytosterols exhibit the ability to diminish the generation of various radicals, including hydroperoxides and hydrogen peroxide. They also promote the activation of antioxidant enzymes such as superoxide dismutase, catalase, and glutathione, while inhibiting lipid peroxidation through the activation of Nrf2 and Nrf2/heme oxygenase-1 (HO-1) signaling pathways. Additionally, they demonstrate a significant inhibitory capacity in the generation of pro-inflammatory cytokines, thus playing a crucial role in regulating the inflammatory/immune response by inhibiting the expression of proteins involved in cellular signaling pathways such as JAK3/STAT3 and NF-κB. Moreover, phytosterols play a key role in reducing cholesterol absorption and improving the lipid profile. These compounds can be used as dietary supplements or included in specific diets to aid control cholesterol levels, particularly in individuals suffering from hypercholesterolemia.

6.
Sci Rep ; 14(1): 12588, 2024 06 01.
Article in English | MEDLINE | ID: mdl-38822113

ABSTRACT

The COVID-19 has had a significant influence on people's lives across the world. The viral genome has undergone numerous unanticipated changes that have given rise to new varieties, raising alarm on a global scale. Bioactive phytochemicals derived from nature and synthetic sources possess lot of potential as pathogenic virus inhibitors. The goal of the recent study is to report new inhibitors of Schiff bases of 1,3-dipheny urea derivatives against SARS COV-2 spike protein through in-vitro and in-silico approach. Total 14 compounds were evaluated, surprisingly, all the compounds showed strong inhibition with inhibitory values between 79.60% and 96.00% inhibition. Here, compounds 3a (96.00%), 3d (89.60%), 3e (84.30%), 3f (86.20%), 3g (88.30%), 3h (86.80%), 3k (82.10%), 3l (90.10%), 3m (93.49%), 3n (85.64%), and 3o (81.79%) exhibited high inhibitory potential against SARS COV-2 spike protein. While 3c also showed significant inhibitory potential with 79.60% inhibition. The molecular docking of these compounds revealed excellent fitting of molecules in the spike protein receptor binding domain (RBD) with good interactions with the key residues of RBD and docking scores ranging from - 4.73 to - 5.60 kcal/mol. Furthermore, molecular dynamics simulation for 150 ns indicated a strong stability of a complex 3a:6MOJ. These findings obtained from the in-vitro and in-silico study reflect higher potency of the Schiff bases of 1,3-diphenyl urea derivatives. Furthermore, also highlight their medicinal importance for the treatment of SARS COV-2 infection. Therefore, these small molecules could be a possible drug candidate.


Subject(s)
Antiviral Agents , Molecular Docking Simulation , Molecular Dynamics Simulation , SARS-CoV-2 , Schiff Bases , Spike Glycoprotein, Coronavirus , Urea , Spike Glycoprotein, Coronavirus/metabolism , Spike Glycoprotein, Coronavirus/chemistry , Schiff Bases/chemistry , Schiff Bases/pharmacology , SARS-CoV-2/drug effects , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Urea/pharmacology , Urea/analogs & derivatives , Urea/chemistry , Humans , COVID-19 Drug Treatment , COVID-19/virology
7.
Integr Cancer Ther ; 23: 15347354241256649, 2024.
Article in English | MEDLINE | ID: mdl-38819027

ABSTRACT

BACKGROUND: Metastatic secondary ocular tumors spread from systemic malignancies, including breast cancer. This study aimed to evaluate the cytotoxicity of extracts from 5 medicinal plants native to Saudi Arabia. METHODS: For preliminary activity screening, cytotoxicity using the MTT assay and selectivity index determinations were made for medicinal plant extracts against various cancer cell-lines. The most promising extract was subjected to GC-MS analysis to determine the phytochemical composition. Clonogenic assays were performed using the most promising extract to confirm the initial results. Finally, western blot analysis was used to determine the modulation in expression of survivin and P27 suppressor genes in the human breast adenocarcinoma (MCF7) cell-line to understand the potential mechanistic properties of the active plant extract. RESULTS: The 5 plant extracts showed various cytotoxic activity levels using IC50. The most active extract was found to be the leaves of Capparis spinosa L. (BEP-07 extract) against the MCF7 breast cancer cell-line (IC50 = 3.61 ± 0.99 µg/ml) and selectivity index of 1.17 compared to the normal human fetal lung fibroblast (MRC5) cells. BEP-07 extract showed a dose dependent clonogenic effect against the MCF7 colonies which was comparable with the effect of doxorubicin. BEP-07 extract caused a significant decrease of survivin and increase in P27 expression compared to control GAPDH at its highest dose (14 µg/ml). The GC-MS chromatogram of Capparis spinosa L. (BEP-07 extract) revealed the existence of 145 compounds, belonging to the diverse classes of phytoconstituents. Fatty acids and their derivatives represent 15.4%, whilst octadecanoic acid, 2,3-dihydroxypropyl ester was the principal component (7.9%) detected. CONCLUSION: Leaves of Capparis spinosa L. (BEP-07 extract) exhibited a significant cytotoxic effect particularly against breast cancer cells. It exhibited this effect through survivin inhibition and via P27 upregulation. The detected phytoconstituents in the plant extract might be involved in tested cytotoxic activity, while further investigations are required to complete the drug candidate profile.


Subject(s)
Plant Extracts , Plants, Medicinal , Humans , Saudi Arabia , Plant Extracts/pharmacology , Plants, Medicinal/chemistry , MCF-7 Cells , Cell Line, Tumor , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Female , Survivin/metabolism , Antineoplastic Agents, Phytogenic/pharmacology , Gas Chromatography-Mass Spectrometry/methods , Phytochemicals/pharmacology
8.
Chem Biodivers ; 21(6): e202400402, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38573028

ABSTRACT

Gastrodin, a bioactive compound derived from the rhizome of the orchid Gastrodia elata, exhibits a diverse range of biological activities. With documented neuroprotective, anti-inflammatory, antioxidant, anti-apoptotic, and anti-tumor effects, gastrodin stands out as a multifaceted therapeutic agent. Notably, it has demonstrated efficacy in protecting against neuronal damage and enhancing cognitive function in animal models of Alzheimer's disease, Parkinson's disease, and cerebral ischemia. Additionally, gastrodin showcases immunomodulatory effects by mitigating inflammation and suppressing the expression of inflammatory cytokines. Its cytotoxic activity involves the inhibition of angiogenesis, suppression of tumor growth, and induction of apoptosis. This comprehensive review seeks to elucidate the myriad potential effects of Gastrodin, delving into the intricate molecular mechanisms underpinning its pharmacological properties. The findings underscore the therapeutic potential of gastrodin in addressing various conditions linked to neuroinflammation and cancer.


Subject(s)
Benzyl Alcohols , Glucosides , Neuroprotective Agents , Benzyl Alcohols/pharmacology , Benzyl Alcohols/chemistry , Glucosides/pharmacology , Glucosides/chemistry , Humans , Animals , Neuroprotective Agents/pharmacology , Neuroprotective Agents/chemistry , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/chemistry , Gastrodia/chemistry , Antioxidants/pharmacology , Antioxidants/chemistry , Apoptosis/drug effects , Neoplasms/drug therapy , Neoplasms/pathology , Neoplasms/metabolism
9.
Phytother Res ; 38(7): 3370-3400, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38655878

ABSTRACT

Gout, or hyperuricemia is a multifactorial and multi-faceted metabolic disease that is quite difficult to manage and/or treat. Conventional therapies such as non-steroidal anti-inflammatory drugs (NSAIDs) such as allopurinol, corticosteroids and colchicine amongst others, have helped in its management and treatment to some extent. This study aimed to compile and analyze the different herbal remedies used in the management of hyperuricemia and gout. A literature search was conducted from key databases (PubMed, ScienceDirect, Cochrane Library, Google Scholar) using relevant keywords via the PRISMA model. Smilax riparia A.DC. from Traditional Chinese Medicine is used in many countries for its therapeutic effect on lowering serum urate levels. No single study was able to establish the efficacy of a specific traditionally used herb via in vitro, in vivo, and clinical studies. Patients were found to use a panoply of natural remedies, mainly plants to treat hyperuricemia and gout, which have been validated to some extent by in vitro, in vivo, and clinical studies. Nonetheless, further research is needed to better understand the ethnopharmacological relationship of such herbal remedies.


Subject(s)
Gout , Hyperuricemia , Hyperuricemia/drug therapy , Gout/drug therapy , Humans , Animals , Phytotherapy , Smilax/chemistry , Medicine, Chinese Traditional/methods , Drugs, Chinese Herbal/therapeutic use , Uric Acid/blood , Plant Extracts/therapeutic use , Plant Extracts/pharmacology , Plants, Medicinal/chemistry
10.
BMC Chem ; 18(1): 76, 2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38637900

ABSTRACT

Nod-like receptor protein 3 (NLRP-3), is an intracellular sensor that is involved in inflammasome activation, and the aberrant expression of NLRP3 is responsible for diabetes mellitus, its complications, and many other inflammatory diseases. NLRP3 is considered a promising drug target for novel drug design. Here, a pharmacophore model was generated from the most potent inhibitor, and its validation was performed by the Gunner-Henry scoring method. The validated pharmacophore was used to screen selected compounds databases. As a result, 646 compounds were mapped on the pharmacophore model. After applying Lipinski's rule of five, 391 hits were obtained. All the hits were docked into the binding pocket of target protein. Based on docking scores and interactions with binding site residues, six compounds were selected potential hits. To check the stability of these compounds, 100 ns molecular dynamic (MD) simulations were performed. The RMSD, RMSF, DCCM and hydrogen bond analysis showed that all the six compounds formed stable complex with NLRP3. The binding free energy with the MM-PBSA approach suggested that electrostatic force, and van der Waals interactions, played a significant role in the binding pattern of these compounds. Thus, the outcomes of the current study could provide insights into the identification of new potential NLRP3 inflammasome inhibitors against diabetes and its related disorders.

11.
Biomed Pharmacother ; 174: 116432, 2024 May.
Article in English | MEDLINE | ID: mdl-38520868

ABSTRACT

Oxidative stress results from a persistent imbalance in oxidation levels that promotes oxidants, playing a crucial role in the early and sustained phases of DNA damage and genomic and epigenetic instability, both of which are intricately linked to the development of tumors. The molecular pathways contributing to carcinogenesis in this context, particularly those related to double-strand and single-strand breaks in DNA, serve as indicators of DNA damage due to oxidation in cancer cases, as well as factors contributing to epigenetic instability through ectopic expressions. Oxidative stress has been considered a therapeutic target for many years, and an increasing number of studies have highlighted the promising effectiveness of natural products in cancer treatment. In this regard, we present significant research on the therapeutic targeting of oxidative stress using natural molecules and underscore the essential role of oxidative stress in cancer. The consequences of stress, especially epigenetic instability, also offer significant therapeutic prospects. In this context, the use of natural epi-drugs capable of modulating and reorganizing the epigenetic network is beginning to emerge remarkably. In this review, we emphasize the close connections between oxidative stress, epigenetic instability, and tumor transformation, while highlighting the role of natural substances as antioxidants and epi-drugs in the anti-tumoral context.


Subject(s)
Antioxidants , Cell Transformation, Neoplastic , Epigenesis, Genetic , Neoplasms , Oxidative Stress , Oxidative Stress/drug effects , Humans , Epigenesis, Genetic/drug effects , Antioxidants/pharmacology , Animals , Cell Transformation, Neoplastic/drug effects , Cell Transformation, Neoplastic/genetics , Cell Transformation, Neoplastic/metabolism , Neoplasms/drug therapy , Neoplasms/pathology , Neoplasms/genetics , Neoplasms/metabolism , Biological Products/pharmacology , DNA Damage/drug effects
12.
Chem Biodivers ; 21(5): e202400116, 2024 May.
Article in English | MEDLINE | ID: mdl-38462536

ABSTRACT

Bioactive metabolites obtained from fruits and vegetables as well as many drugs have various capacities to prevent or treat various ailments. Nevertheless, their efficiency, in vivo, encounter many challenges resulting in lower efficacy as well as different side effects when high doses are used resulting in many challenges for their application. Indeed, demand for effective treatments with no or less unfavorable side effects is rising. Delivering active molecules to a particular site of action within the human body is an example of targeted therapy which remains a challenging field. Developments of nanotechnology and polymer science have great promise for meeting the growing demands of efficient options. Encapsulation of active ingredients in nano-delivery systems has become as a vitally tool for protecting the integrity of critical biochemicals, improving their delivery, enabling their controlled release and maintaining their biological features. Here, we examine a wide range of nano-delivery techniques, such as niosomes, polymeric/solid lipid nanoparticles, nanostructured lipid carriers, and nano-emulsions. The advantages of encapsulation in targeted, synergistic, and supportive therapies are emphasized, along with current progress in its application. Additionally, a revised collection of studies was given, focusing on improving the effectiveness of anticancer medications and addressing the problem of antimicrobial resistance. To sum up, this paper conducted a thorough analysis to determine the efficacy of encapsulation technology in the field of drug discovery and development.


Subject(s)
Nanoparticles , Humans , Nanoparticles/chemistry , Drug Delivery Systems , Drug Carriers/chemistry
13.
BMC Chem ; 18(1): 57, 2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38528576

ABSTRACT

Lung cancer is a disease with a high mortality rate and it is the number one cause of cancer death globally. Approximately 12-14% of non-small cell lung cancers are caused by mutations in KRASG12C. The KRASG12C is one of the most prevalent mutants in lung cancer patients. KRAS was first considered undruggable. The sotorasib and adagrasib are the recently approved drugs that selectively target KRASG12C, and offer new treatment approaches to enhance patient outcomes however drug resistance frequently arises. Drug development is a challenging, expensive, and time-consuming process. Recently, machine-learning-based virtual screening are used for the development of new drugs. In this study, we performed machine-learning-based virtual screening followed by molecular docking, all atoms molecular dynamics simulation, and binding energy calculations for the identifications of new inhibitors against the KRASG12C mutant. In this study, four machine learning models including, random forest, k-nearest neighbors, Gaussian naïve Bayes, and support vector machine were used. By using an external dataset and 5-fold cross-validation, the developed models were validated. Among all the models the performance of the random forest (RF) model was best on the train/test dataset and external dataset. The random forest model was further used for the virtual screening of the ZINC15 database, in-house database, Pakistani phytochemicals, and South African Natural Products database. A total of 100 ns MD simulation was performed for the four best docking score complexes as well as the standard compound in complex with KRASG12C. Furthermore, the top four hits revealed greater stability and greater binding affinities for KRASG12C compared to the standard drug. These new hits have the potential to inhibit KRASG12C and may help to prevent KRAS-associated lung cancer. All the datasets used in this study can be freely available at ( https://github.com/Amar-Ajmal/Datasets-for-KRAS ).

14.
J Biomol Struct Dyn ; : 1-16, 2024 Jan 31.
Article in English | MEDLINE | ID: mdl-38294707

ABSTRACT

Present research was designed to synthesize and characterize the flurbiprofen derivatives and to evaluate their analgesic, anti-inflammatory and gastro-protective activities in post-operative and chronic inflammatory pain models. Flurbiprofen derivatives were produced by using three-step processes involving esterification, hydrazide production, and schiff base, each of which modified a different carboxyl group. All the newly synthesized flurbiprofen derivatives (NS5-NS8) were characterized by 1H NMR,13C NMR,19F NMR and HR-ESI-MS, and the post-operative, inflammatory pain and ulcerogenic activities were determined in well-established in-vivo animal models. To evaluate post-operative and inflammatory pain, various doses of compounds [1, 3, 10, and 30 mg/kg (bwt)] were used, while their ulcerogenic potential was assessed at doses of 100 and 150 mg/kg (bwt). The incisional damage linked pain was significantly (p < 0.001) reduced by derivatives at different doses in both the acute and repeated tests with decreased response of phologistic agent-induced inflammation. The stomach histology and biochemical features demonstrate that the synthesized derivatives have no potential to cause ulcerogenicity as compared to aspirin and flurbiprofen. Furthermore, docking shows that the hydrazide moiety of these compounds is crucial in interacting within COX-2 binding site. Therefore, the synthesized compounds exhibit strong analgesic and anti-inflammatory effects and a low risk of causing ulcers. These attributes render them potentially valuable therapeutic agents for the treatment of pathological disorders associated with inflammation and pain.Communicated by Ramaswamy H. Sarma.

15.
Bioorg Chem ; 144: 107144, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38281382

ABSTRACT

A series of twenty-seven bis(acylhydrazones) were successfully synthesized with high yields through a multistep process, which entailed the esterification of hydroxyl groups, hydrazination with an excess of hydrazine hydrate, and subsequent reactions with various carbonyl moieties (aldehydes). In the final stage of synthesis, different chemical species including aromatic, heterocyclic, and aliphatic compounds were integrated into the framework. The resulting compounds were characterized using several spectroscopic techniques (1H NMR, 13C NMR, and mass spectrometry). Their anticholinesterase activities were assessed in vitro by examining their interactions with two cholinesterase enzymes: acetylcholinesterase (AChE) and butyrylcholinesterase (BChE). Among the synthesized hits, compounds 3, 5, 6, 9-12, and 14 exhibited good to moderate inhibition of AChE. Specifically, 10 (IC50 = 26.3 ± 0.4 µM) and 11 (IC50 = 28.4 ± 0.5 µM) showed good inhibitory activity against AChE, while 9, 12, 3, and 6 exhibited significant inhibition potential against AChE with IC50 values ranging from 35.2 ± 1.1 µM to 64.4 ± 0.3 µM. On the other hand, 5 (IC50 = 22.0 ± 1.1 µM) and 27 (IC50 = 31.3 ± 1.3 µM) displayed significant, and 19 (IC50 = 92.6 ± 0.4 µM) showed moderate inhibitory potential for BChE. Notably, 5 and 27 exhibited dual inhibition of AChE and BChE, with greater potency than the standard drug galantamine. The binding patterns of these molecules within the binding cavities of AChE and BChE were anticipated by molecular docking which showed good correlation with our in vitro findings. Further structural optimization of these molecules may yield more potent AChE and BChE inhibitors.


Subject(s)
Biphenyl Compounds , Butyrylcholinesterase , Cholinesterase Inhibitors , Hydrazines , Cholinesterase Inhibitors/chemistry , Butyrylcholinesterase/metabolism , Acetylcholinesterase/metabolism , Molecular Docking Simulation , Structure-Activity Relationship
16.
J Biomol Struct Dyn ; 42(7): 3630-3640, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37216319

ABSTRACT

Interleukin-2-inducible T-cell kinase (ITK) is a crucial intracellular signaling mediator in normal and malignant T-cells and natural killer cells. Selective inhibition of ITK might be useful for treating a variety of disorders including; autoimmune, inflammatory, and neoplastic disorders. Over the past two decades, the clinical management of ITK inhibitors has progressed dramatically. So far, specific inhibitor with no off-target effects against ITK is available. Herein, we aim to discover potential virtual hits to fasten the process of drug design and development against ITK. In this regard, the key chemical characteristics of ITK inhibitors were identified using ligand-based pharmacophore modeling. The validated pharmacophore comprises one hydrogen bond donor and three hydrogen bond acceptors and was utilized as a 3D query in virtual screening using ZINC, Covalent, and in-house databases. A total of 12 hit compounds were chosen on the basis of their critical interactions with the significant amino acids of ITK. The orbital energies such as HOMO and LUMO of the hit compounds were calculated to evaluate the inhibitor's potencies. Further, molecular dynamics simulation demonstrated the stability of ITK upon binding of selected virtual hits. Binding energy using the MMGBSA method showed the potential binding affinity of all the hits with ITK. The research identifies key chemical characteristics with geometric restrictions that lead to ITK inhibition.Communicated by Ramaswamy H. Sarma.


Subject(s)
Interleukin-2 , Ligands , Molecular Dynamics Simulation , Drug Design , Molecular Docking Simulation
17.
Biomed Pharmacother ; 170: 115989, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38103309

ABSTRACT

Cyanobacteria and microalgae contain various phytochemicals, including bioactive components in the form of secondary metabolites, namely flavonoids, phenolic acids, terpenoids, and tannins, with remarkable anticancer effects. This review highlights the recent advances in bioactive compounds, with potential anticancer activity, produced by cyanobacteria and microalgae. Previous in vitro investigations showed that many of these bioactive compounds exhibit potent effects against different human cancer types, such as leukemia and breast cancers. Multiple mechanisms implicated in the antitumor effect of these compounds were elucidated, including their ability to target cellular, subcellular, and molecular checkpoints linked to cancer development and promotion. Recent findings have highlighted various mechanisms of action of bioactive compounds produced by cyanobacteria and microalgae, including induction of autophagy and apoptosis, inhibition of telomerase and protein kinases, as well as modulation of epigenetic modifications. In vivo investigations have demonstrated a potent anti-angiogenesis effect on solid tumors, as well as a reduction in tumor volume. Some of these compounds were examined in clinical investigations for certain types of cancers, making them potent candidates/scaffolds for antitumor drug development.


Subject(s)
Antineoplastic Agents , Cyanobacteria , Microalgae , Neoplasms , Humans , Microalgae/chemistry , Cyanobacteria/metabolism , Biological Factors , Antineoplastic Agents/chemistry , Neoplasms/drug therapy
18.
Saudi Pharm J ; 31(12): 101877, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38075546

ABSTRACT

Utilizing multi-target drugs shows great promise as an effective strategy against polygenic diseases characterized by intricate patho-mechanisms, such as ulcers, skin dermatitis, and cancers. The current research centers around the creation of hybrid compounds, connecting dibenzazepine and isoxazole, with the aim of exploring their potential as inhibitors for urease and tyrosinase enzymes. Analogs 6a, 6b, 6d, 6 h-6j, and 6 l demonstrated strong inhibitory potential against tyrosinase enzyme with IC50 values of 4.32 ± 0.31-12.36 ± 0.48. Whereas analogs 6a, 6c, 6e, 6f, 6h-6m, and 6r exhibited potent inhibitory activities against urease enzyme with IC50 values of 3.67 ± 0.91-15.60 ± 0.18 µM. Furthermore, compounds 6i, 6n, and 6r showed weak toxic effect in BJ-cell line, whereas the remaining compounds were found non-toxic to normal cell line. The mechanistic studies of potent inhibitors of both the enzymes showed competitive mode of inhibition. Molecular docking was employed to establish the relationship between structure and activity and to elucidate the interaction mechanism. This analysis revealed that the active analogs exhibited crucial interactions with the active site residues of urease and tyrosinase, thus corroborating our experimental results. Hence, the generated derivatives of dibenzazepine-linked isoxazoles present intriguing starting points for further investigations into their potential as inhibitors of urease and tyrosinase, with the potential for future modification and enhancement.

19.
ACS Omega ; 8(49): 46816-46829, 2023 Dec 12.
Article in English | MEDLINE | ID: mdl-38107974

ABSTRACT

Alzheimer's disease (AD) is a neurological disease that disturbs the memory, thinking skills, and behavior of the affected person. AD is a complex disease caused by the breakdown of acetylcholine via acetylcholinesterase (AChE). The present study aimed to assess the synthetic inhibitors of AChE that could be used to treat AD. For this purpose, synthetic compounds of oxadiazole derivatives (15-35) were evaluated and identified as promising inhibitors of AChE, exhibiting IC50 varying between 41.87 ± 0.67 and 1580.25 ± 0.7 µM. The kinetic parameters indicated that all the studied compounds bind to the allosteric site and decrease the efficiency of the AChE enzyme. In silico docking analysis showed that the majority of the compounds interact with the anionic subsite and Per-Arnt-Sim domain of AChE and are stabilized by various bonds including π-π and hydrogen bonding. The stability of the most potent compounds 16 and 17 with AChE interaction was confirmed by molecular dynamics simulations. Moreover, all compounds exhibited concentration-dependent calcium (Ca2+) antagonistic and spasmolytic activities. Among the whole series of oxadiazole derivatives, compounds 16 and 17 displayed the highest activities on spontaneous and potassium (K+)-induced contraction. Therefore, the AChE inhibitory potential, cytotoxicity safe profile, and Ca2+ antagonistic ability of these compounds make them potential therapeutic agents against AD and its associated problems in the future.

20.
Biomed Pharmacother ; 169: 115783, 2023 Dec 31.
Article in English | MEDLINE | ID: mdl-37944439

ABSTRACT

Nuclear receptors (NRs) represent intracellular proteins that function as a signaling network of transcriptional factors to control genes in response to a variety of environmental, dietary, and hormonal stimulations or serve as orphan receptors lacking a recognized ligand. They also play an essential role in normal development, metabolism, cell growth, cell division, physiology, reproduction, and homeostasis and function as biological markers for tumor subclassification and as targets for hormone therapy. NRs, including steroid hormone receptors (SHRs), have been studied as tools to examine the fundamentals of transcriptional regulation within the development of mammals and human physiology, in addition to their links to disturbances. In this regard, it is widely recognized that aberrant NR signaling is responsible for the pathological growth of hormone-dependent tumors in response to SHRs dysregulation and consequently represents a potential therapeutic candidate in a range of diseases, as in the case of prostate cancer and breast cancer. On the other hand, phytosterols are a group of plant-derived compounds that act directly as ligands for NRs and have proven their efficacy in the management of diabetes, heart diseases, and cancers. However, these plants are not suggested in cases of hormone-dependent cancer since a certain group of plants contains molecules with a chemical structure similar to that of estrogens, which are known as phytoestrogens or estrogen-like compounds, such as lignans, coumestans, and isoflavones. Therefore, it remains an open and controversial debate regarding whether consuming a phytosterol-rich diet and adopting a vegetarian lifestyle like the Mediterranean diet may increase the risk of developing steroid hormone-dependent cancers by constitutively activating SHRs and thereby leading to tumor transformation. Overall, the purpose of this review is to better understand the relevant mechanistic pathways and explore epidemiological investigations in order to establish that phytosterols may contribute to the activation of NRs as cancer drivers in hormone-dependent cancers.


Subject(s)
Breast Neoplasms , Phytosterols , Receptors, Steroid , Animals , Humans , Male , Estrogens/metabolism , Mammals , Phytoestrogens , Receptors, Cytoplasmic and Nuclear , Receptors, Steroid/chemistry , Receptors, Steroid/physiology , Steroids
SELECTION OF CITATIONS
SEARCH DETAIL
...