Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Tissue Cell ; 85: 102241, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37865040

ABSTRACT

BACKGROUND: Renal ischemia/reperfusion (I/R) is a primary culprit of acute kidney injury. Neurodegeneration can result from I/R, but the mechanisms are still challenging. We studied the implications of bilateral renal I/R on brain and potential involvement of the oxidative stress (OS) driven extracellular signal-regulated kinase1/2, c-Jun N-terminal kinase (ERK1/2, JNK) and Galectin-3 (Gal-3)/nuclear factor Kappa B (NF-қB)/tumor necrosis factor-alpha (TNF-α), high mobility group box-1 (HMGB-1), and caspase-3 paths upregulation. We tested the impact of Nano-trimetazidine (Nano-TMZ) on these pathways being a target of its neuroprotective effects. METHODS: Study groups; Sham, I/R, TMZ+I/R, and Nano-TMZ+I/R. Kidney functions, cognition, hippocampal OS markers, Gal-3, NF-қB, p65 and HMGB-1 gene expression, TNF-α level, t-JNK/p-JNK and t-ERK/p-ERK proteins, caspase-3, glial fibrillary acidic protein (GFAP) and ionized calcium binding protein-1 (Iba-1) were assessed. RESULTS: Nano-TMZ averted renal I/R-induced hippocampal impairment by virtue of its anti: oxidative, inflammatory, and apoptotic properties. CONCLUSION: Nano-TMZ is more than anti-ischemic.


Subject(s)
Kidney Diseases , Reperfusion Injury , Trimetazidine , Humans , Trimetazidine/pharmacology , NF-kappa B/metabolism , Tumor Necrosis Factor-alpha/metabolism , Galectin 3/metabolism , Caspase 3/metabolism , MAP Kinase Signaling System , Ischemia , Reperfusion Injury/metabolism , Reperfusion , HMGB Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...