Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
BMC Res Notes ; 16(1): 280, 2023 Oct 19.
Article in English | MEDLINE | ID: mdl-37858260

ABSTRACT

OBJECTIVE: Differentiation of immortalized Mesenchymal Stromal Cells (iMSCs) into PDGFRα-positive cells under controlled growth conditions has several vital implications in functional studies concerned with the pathogenesis of Diabetic Gastroparesis (DGP). A study published previously by our research group demonstrated the importance of these cells as a novel, in-vitro model for investigating the functional role of neuronal nitric oxide synthase. The currently available methods require fresh differentiation of PDGFRα-positive cells for each round of experimentation. This leads to longer delays, higher usage of reagents, and inconsistency in reproducibility of experiments frequently. We thus aimed to establish through validation that cryopreserving and maintaining the iMSC-derived PDGFRα-positive cells for functional investigations help us to overcome these challenges. RESULTS: We demonstrated for the first time that the differentiated PDGFRα-positive cells from iMSCs can be cryopreserved and thawed to be used as per the experimental requirements with prolonged preservation of their characteristics. We assessed the viability of differentiated PDGFRα-positive cells pre- and post-freezing with the subsequent validation of their functional features using flow cytometry, qRT-PCR, and western blotting. We have been successful in demonstrating for the first time that the cryopreservation of previously differentiated PDGFRα-positive cells can be used as a feasible and cost-effective model for experimental reproducibility in functional studies of Diabetes Gastroparesis.


Subject(s)
Mesenchymal Stem Cells , Receptor, Platelet-Derived Growth Factor alpha , Cell Differentiation , Cryopreservation , Reproducibility of Results
2.
Saudi J Biol Sci ; 29(4): 2674-2682, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35531240

ABSTRACT

Human dental pulp stem cells (HDPSCs) have great potential to be used in regenerative medicine. To use these stem cells effectively for this purpose, they should be grown in a 3D cell culture that mimics their natural niches instead of a 2D conventional cell culture. The aim of this study was to grow the HDPSCs in the 3D cell culture created by Transglutaminase-crosslinked collagen hydrogels (Col-Tgel) in two different strengths to find a suitable 3D cell culture environment for these stem cells. Two stiffness of the 3D Col-Tgel were used to grow the HDPSCs: soft and medium matrix with strength of 0.9-1.5 kPa and 14-20 kPa, respectively. HDPSCs express markers similar to MSCs, therefore seven such markers were analyzed in the HDPSCs during their growth in the 2D and in the 3D soft and medium Col-Tgel. The CD105 and CD90 markers were significantly (p < 0.05) downregulated in HDPSCs cultured in both 3D cell culture conditions compared with HDPSCs in 2D cell culture. Furthermore, CD34 marker, a negative marker, expressed by a few cells in HDPSCs culture was upregulated (p < 0.05) in HDPSCs cultured in medium 3D Col-Tgel, indicating cells that expressing the marker grow better in medium 3D Col-Tgel. The apoptosis results revealed that HDPSCs in medium 3D Col-Tgel had the least number of live cells and a significantly (p < 0.05) higher early apoptosis rate compared to HDPSCs in 2D and 3D Col-Tgel medium. MTT analysis also showed a significant difference among the three cell culture conditions. We conclude that HDPSCs cultured on 3D soft Col-Tgel showed better proliferation than cells cultured in 3D medium gel. These results demonstrate that the ideal environment to grow HDPSCs in 3D is the soft Col-Tgel not medium Col-Tgel.

3.
BMC Genom Data ; 23(1): 17, 2022 03 09.
Article in English | MEDLINE | ID: mdl-35264099

ABSTRACT

BACKGROUND: Differentiation of Immortalized Human Bone Marrow Mesenchymal Stromal Cells - hTERT (iMSC3) into adipocytes is in vitro model of obesity. In our earlier study, rosiglitazone enhanced adipogenesis particularly the brown adipogenesis of iMSC3. In this study, the transcriptomic profiles of iMSC3 derived adipocytes with and without rosiglitazone were analyzed through mRNA sequencing. RESULTS: A total of 1508 genes were differentially expressed between iMSC3 and the derived adipocytes without rosiglitazone treatment. GO and KEGG enrichment analyses revealed that rosiglitazone regulates PPAR and PI3K-Akt pathways. The constant rosiglitazone treatment enhanced the expression of Fatty Acid Binding Protein 4 (FABP4) which enriched GO terms such as fatty acid binding, lipid droplet, as well as white and brown fat cell differentiation. Moreover, the constant treatment upregulated several lipid droplets (LDs) associated proteins such as PLIN1. Rosiglitazone also activated the receptor complex PTK2B that has essential roles in beige adipocytes thermogenic program. Several uniquely expressed novel regulators of brown adipogenesis were also expressed in adipocytes derived with rosiglitazone: PRDM16, ZBTB16, HOXA4, and KLF15 in addition to other uniquely expressed genes. CONCLUSIONS: Rosiglitazone regulated several differentially regulated genes and non-coding RNAs that warrant further investigation about their roles in adipogenesis particularly brown adipogenesis.


Subject(s)
Mesenchymal Stem Cells , Telomerase , Adipocytes , Humans , Phosphatidylinositol 3-Kinases/metabolism , Rosiglitazone/pharmacology , Telomerase/genetics , Transcriptome
4.
BMC Res Notes ; 14(1): 192, 2021 May 19.
Article in English | MEDLINE | ID: mdl-34011402

ABSTRACT

OBJECTIVE: MG-63 cells that have osteoblastic and adipogenic differentiation potential were evaluated for internalization, and adipogenic differentiation in the presence and absence of the covalently functionalized aryl gold nanoparticles (AuNPs-C6H4-4-COOH). RESULTS: Inductively coupled plasma, flow cytometry and confocal microscopy analyses confirmed that gold nanoparticles were easily internalized by MG-63 cells. The MG-63 cells were differentiated into adipocytes without gold-aryl nanoparticles and with the gold-aryl nanoparticles at 5 µM concentration in both induction and maintenance media. The lipid content assay and the relative expressions of PPAR-γ, ADR1, GLUT1 and GLUT4 genes showed no significant variation with and without the gold nanoparticles treatment. Differential phosphorylation levels of 43 kinases phosphorylation sites were evaluated using the human phospho-kinase array to assess the effect of the gold nanoparticles on the signaling pathways during the differentiation. No kinase phosphorylation site was differentially phosphorylated with two or more folds after the nanoparticles treatment after the first day as well as at the end of MG-63 cells differentiation. The gold-aryl nanoparticles do not affect MG-63 cells differentiation into adipocytes neither do they affect any key signaling pathway. These properties make these gold nanoparticles suitable for future drug delivery and medical applications.


Subject(s)
Gold , Metal Nanoparticles , Adipogenesis , Cell Differentiation , Humans , PPAR gamma , Signal Transduction
5.
Int J Mol Sci ; 22(7)2021 Mar 29.
Article in English | MEDLINE | ID: mdl-33805311

ABSTRACT

It is evident that depletion of interstitial cells and dysfunction of nitric oxide (NO) pathways are key players in development of several gastrointestinal (GI) motility disorders such as diabetic gastroparesis (DGP). One of the main limitations of DGP research is the lack of isolation methods that are specific to interstitial cells, and therefore conducting functional studies is not feasible. The present study aims (i) to differentiate telomerase transformed mesenchymal stromal cells (iMSCs) into platelet-derived growth factor receptor-α-positive cells (PDGFRα-positive cells) using connective tissue growth factor (CTGF) and L-ascorbic acids; (ii) to investigate the effects of NO donor and inhibitor on the survival rate of differentiated PDGFRα-positive cells; and (iii) to evaluate the impact of increased glucose concentrations, mimicking diabetic hyperglycemia, on the gene expression of neuronal nitric oxide synthase (nNOS). A fibroblastic differentiation-induction medium supplemented with connective tissue growth factor was used to differentiate iMSCs into PDGFRα-positive cells. The medium was changed every day for 21 days to maintain the biological activity of the growth factors. Gene and protein expression, scanning electron and confocal microscopy, and flow cytometry analysis of several markers were conducted to confirm the differentiation process. Methyl tetrazolium cell viability, nitrite measurement assays, and immunostaining were used to investigate the effects of NO on PDGFRα-positive cells. The present study, for the first time, demonstrated the differentiation of iMSCs into PDGFRα-positive cells. The outcomes of the functional studies showed that SNAP (NO donor) increased the survival rate of differentiated PDGFRα-positive cells whereas LNNA (NO inhibitor) attenuated these effects. Further experimentations revealed that hyperglycemia produced a significant increase in expression of nNOS in PDGFRα-positive cells. Differentiation of iMSCs into PDGFRα-positive cells is a novel model to conduct functional studies and to investigate the involvement of NO pathways. This will help in identifying new therapeutic targets for treatment of DGP.


Subject(s)
Cell Differentiation , Interstitial Cells of Cajal/enzymology , Mesenchymal Stem Cells/physiology , Models, Biological , Nitric Oxide Synthase Type I , Receptor, Platelet-Derived Growth Factor alpha , Animals , Bone Marrow , Cells, Cultured , Diabetes Complications , Gastroparesis , Humans , Interstitial Cells of Cajal/metabolism
6.
Cell Biosci ; 10: 126, 2020.
Article in English | MEDLINE | ID: mdl-33133516

ABSTRACT

INTRODUCTION: Mesenchymal stem cells (MSCs) isolated from bone marrow have different developmental origins, including neural crest. MSCs can differentiate into neural progenitor-like cells (NPCs) under the influence of bFGF and EGF. NPCs can terminally differentiate into neurons that express beta-III-tubulin and elicit action potential. The main aim of the study was to identify key genetic markers involved in differentiation of MSCs into NPCs through transcriptomic analysis. METHOD: Total RNA was isolated from MSCs and MSCs-derived NPCs followed by cDNA library construction for transcriptomic analysis. Sample libraries that passed the quality and quantity assessments were subjected to high throughput mRNA sequencing using NextSeq®500. Differential gene expression analysis was performed using the DESeq2 R package with MSC samples being a reference group. The expression of eight differentially regulated genes was counter validated using real-time PCR. RESULTS: In total, of the 3,252 differentially regulated genes between MSCs and NPCs with two or more folds, 1,771 were upregulated genes, whereas 1,481 were downregulated in NPCs. Amongst these differential genes, 104 transcription factors were upregulated, and 45 were downregulated in NPCs. Neurogenesis related genes were upregulated in NPCs and the main non-redundant gene ontology (GO) terms enriched in NPCs were the autonomic nervous system, cell surface receptor signalling pathways), extracellular structure organisation, and programmed cell death. The main non-redundant GO terms enriched in MSCs included cytoskeleton organisation cytoskeleton structural constituent, mitotic cell cycle), and the mitotic cell cycle process Gene set enrichment analysis also confirmed cell cycle regulated pathways as well as Biocarta integrin pathway were upregulated in MSCs. Transcription factors enrichment analysis by ChEA3 revealed Foxs1 and HEYL, amongst the top five transcription factors, inhibits and enhances, respectively, the NPCs differentiation of MSCs. CONCLUSIONS: The vast differences in the transcriptomic profiles between NPCs and MSCs revealed a set of markers that can identify the differentiation stage of NPCs as well as provide new targets to enhance MSCs differentiation into NPCs.

7.
Front Genet ; 10: 1087, 2019.
Article in English | MEDLINE | ID: mdl-31781163

ABSTRACT

Non-syndromic hearing loss (NSHL) is a hereditary disorder that affects many populations. Many genes are involved in NSHL and the mutational load of these genes often differs among ethnic groups. Claudin-14 (CLDN14), a tight junction protein, is known to be associated with NSHL in many populations. In this study, we aimed to identify the responsible variants in 3 different Yemeni families affected with NSHL. Firstly, clinical exome sequencing (CES) performed for 3 affected patients from these different families identified a new nonsense variant (c.414G > A) in CLDN14. This variant was then confirmed by Sanger sequencing and PCR-RFLP. Subsequently, four microsatellite markers were used to genotype these families, which revealed a founder effect for this variant. Overall, this study illustrates the implication of the CLDN14 gene in the Yemeni population with NSHL and identifies a new founder variant.

8.
Int J Mol Sci ; 20(7)2019 Apr 01.
Article in English | MEDLINE | ID: mdl-30939750

ABSTRACT

Obesity is a major risk for diabetes. Brown adipose tissue (BAT) mediates production of heat while white adipose tissue (WAT) function in the storage of fat. Roles of BAT in the treatment of obesity and related disorders warrants more investigation. Peroxisome proliferator activator receptor gamma (PPAR-γ) is the master regulator of both BAT and WAT adipogenesis and has roles in glucose and fatty acid metabolism. Adipose tissue is the major expression site for PPAR-γ. In this study, the effects of rosiglitazone on the brown adipogenesis and the association of MAPK and PI3K pathways was investigated during the in vitro adipogenic differentiation of telomerase transformed mesenchymal stromal cells (iMSCs). Our data indicate that 2 µM rosiglitazone enhanced adipogenesis by over-expression of PPAR-γ and C/EBP-α. More specifically, brown adipogenesis was enhanced by the upregulation of EBF2 and UCP-1 and evidenced by multilocular fatty droplets morphology of the differentiated adipocytes. We also found that rosiglitazone significantly activated MAPK and PI3K pathways at the maturation stage of differentiation. Overall, the results indicate that rosiglitazone induced overexpression of PPAR-γ that in turn enhanced adipogenesis, particularly browning adipogenesis. This study reports the browning effects of rosiglitazone during the differentiation of iMSCs into adipocytes in association with the activation of MAPK and PI3K signaling pathways.


Subject(s)
Adipocytes, Brown/drug effects , Adipogenesis , Hypoglycemic Agents/pharmacology , MAP Kinase Signaling System , Rosiglitazone/pharmacology , Adipocytes, Brown/cytology , Adipocytes, Brown/metabolism , Basic Helix-Loop-Helix Transcription Factors/genetics , Basic Helix-Loop-Helix Transcription Factors/metabolism , CCAAT-Enhancer-Binding Protein-alpha/genetics , CCAAT-Enhancer-Binding Protein-alpha/metabolism , Cell Line , Humans , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/drug effects , Mesenchymal Stem Cells/metabolism , PPAR gamma/genetics , PPAR gamma/metabolism , Phosphatidylinositol 3-Kinases/genetics , Phosphatidylinositol 3-Kinases/metabolism , Uncoupling Protein 1/genetics , Uncoupling Protein 1/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...