Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
PLoS One ; 19(6): e0301554, 2024.
Article in English | MEDLINE | ID: mdl-38861496

ABSTRACT

In Sudan, resistance to benzimidazoles has been reported recently in cattle and goats from South Darfur. Herein, ivermectin efficacy against gastrointestinal nematodes (GINs) was evaluated in sheep and goats in three study areas in South Darfur. The faecal egg count reduction test (FECRT) was used to evaluate the efficacy of ivermectin in sheep and goats naturally infected with GINs in the region of Bulbul (goats: n = 106), Kass (goats: n = 40) and Nyala (Domaia (sheep: n = 47, goats: n = 77) and the University farm (goats: n = 52)), using different treatment plans, and the efficacy was evaluated 12 days after treatment. Ivermectin efficacy was also evaluated in goats experimentally infected using local Haemonchus contortus isolates from Kass and Nyala. Nematodes surviving ivermectin treatment in goats in Bulbul and Nyala were harvested and larvae used to infect worm-free male sheep (n = 6, ≤6 months old). Infected sheep were dosed subcutaneously with ivermectin every eight days with increasing doses from 0.2 mg/kg to 1.6 mg/kg bodyweight (bw). Reduced ivermectin efficacy was identified in sheep and goats in the four study locations. Using a paired statistic, the efficacy of a therapeutic dose in sheep was 75.6% (90% upper credible limit (UCrL): 77.5%), while twice the recommended dose led to a reduction of 92.6% (90% UCrL: 93.3%). In goats, the FECRs of a therapeutic dose were 72.9-95.3% (90% UCrL range: 73.6-95.7%) in Bulbul, Nyala Domaia, Nyala University farm and Kass. Twice the dose recommended for goats in Bulbul revealed a 90% UCrL of 87.6%. All post-treatment faecal cultures contained only Haemonchus spp. larvae. The experimental infection trials in sheep and goats supported our findings from field trials and calculated upper 90% CrL of below 98.9%. For the first time highly ivermectin resistant H. contortus populations have been identified in sheep and goats in Sudan, and resistance was experimentally confirmed.


Subject(s)
Drug Resistance , Goat Diseases , Goats , Ivermectin , Nematode Infections , Sheep Diseases , Animals , Goats/parasitology , Ivermectin/pharmacology , Ivermectin/therapeutic use , Sheep/parasitology , Sheep Diseases/drug therapy , Sheep Diseases/parasitology , Goat Diseases/drug therapy , Goat Diseases/parasitology , Sudan , Nematode Infections/drug therapy , Nematode Infections/veterinary , Nematode Infections/parasitology , Feces/parasitology , Male , Parasite Egg Count/veterinary , Nematoda/drug effects , Anthelmintics/therapeutic use , Anthelmintics/pharmacology , Haemonchus/drug effects
2.
Parasit Vectors ; 14(1): 101, 2021 Feb 08.
Article in English | MEDLINE | ID: mdl-33557939

ABSTRACT

BACKGROUND: Benzimidazole (BZ) anthelmintics are widely used to control infections with parasitic nematodes, but BZ resistance is an emerging threat among several nematode species infecting humans and animals. In Sudan, BZ-resistant Haemonchus contortus populations were recently reported in goats in South Darfur State. The objective of this study was to collect data regarding the situation of BZ resistance in cattle parasitic nematodes in South Darfur using phenotypic and molecular approaches, besides providing some epidemiological data on nematodes in cattle. METHODS: The faecal egg count reduction test and the egg hatch test (EHT) were used to evaluate benzimidazole efficacy in cattle nematodes in five South Darfur study areas: Beleil, Kass, Nyala, Rehed Al-Birdi and Tulus. Genomic DNA was extracted from pools of third-stage larvae (L3) (n = 40) during trials, before and after treatment, and pools of adult male Haemonchus spp. (n = 18) from abattoirs. The polymorphisms F167Y, E198A and F200Y in isotype 1 ß-tubulin genes of H. contortus and H. placei were analysed using Sanger and pyrosequencing. RESULTS: Prevalence of gastro-intestinal helminths in cattle was 71% (313/443). Reduced albendazole faecal egg count reduction efficacy was detected in three study areas: Nyala (93.7%), Rehed Al-Birdi (89.7%) and Tulus (88.2%). In the EHT, EC50 values of these study areas ranged between 0.032 and 0.037 µg/ml thiabendazole. Genus-specific PCRs detected the genera Haemonchus, Trichostrongylus and Cooperia in L3 samples collected after albendazole treatment. Sanger sequencing followed by pyrosequencing assays did not detect elevated frequencies of known BZ resistance-associated alleles in codon F167Y, E198A and F200Y in isotype 1 ß-tubulin gene of H. placei (≤ 11.38%). However, polymorphisms were detected in H. contortus and in samples with mixed infections with H. contortus and H. placei at codon 198, including E198L (16/58), E198V (2/58) and potentially E198Stop (1/58). All pooled L3 samples post-albendazole treatment (n = 13) were identified as H. contortus with an E198L substitution at codon 198. CONCLUSIONS: To the knowledge of the authors, this is the first report of reduced albendazole efficacy in cattle in Sudan and is the first study describing an E198L substitution in phenotypically BZ-resistant nematodes collected from cattle.


Subject(s)
Anthelmintics/pharmacology , Benzimidazoles/pharmacology , Drug Resistance/genetics , Haemonchiasis/veterinary , Haemonchus/drug effects , Trichostrongylus/drug effects , Animals , Cattle/parasitology , DNA, Helminth , Feces/parasitology , Female , Genome, Helminth , Haemonchiasis/epidemiology , Haemonchus/genetics , Male , Parasite Egg Count , Sudan/epidemiology
3.
Parasit Vectors ; 13(1): 114, 2020 Mar 02.
Article in English | MEDLINE | ID: mdl-32122383

ABSTRACT

BACKGROUND: Benzimidazole (BZ) resistance in gastrointestinal nematodes is a worldwide problem for livestock production, particularly in small ruminants. Assignment of the emergence of resistance using sensitive and reliable methods is required to adopt the correct strategies for control. In Sudan, BZ resistant Haemonchus contortus populations were recently reported in goats in South Darfur. This study aimed to provide additional data regarding albendazole efficacy and to describe the prevailing molecular BZ resistance mechanisms. METHODS: Faecal egg count reduction and egg hatch tests (EHT) were used to evaluate albendazole efficacy in three different areas of South Darfur using naturally (Rehed Al-Birdi and Tulus) and experimentally infected (Tulus and Um Dafuq) goats. Using samples from Central, East and South Darfur, pyro- and Sanger sequencing were used to detect the polymorphisms F167Y, E198A and F200Y in H. contortus isotype 1 ß-tubulin in DNA extracted from pooled third-stage larval (L3) samples (n = 36) on days 0 and 10 during trials, and from pooled adult male H. contortus (treated goats, n = 14; abattoirs, n = 83) including samples from populations previously found to be resistant in South Darfur. RESULTS: Albendazole efficacies at 5, 7.5 and 10 mg/kg doses were 73.5-90.2% on day 14 in natural and experimental infections while 12.5 mg/kg showed > 96.6% efficacy. EC50 in the EHT were 0.8 and 0.11 µg/ml thiabendazole in natural and experimental infection trials, respectively. PCRs detected Haemonchus, Trichostrongylus and Cooperia in L3 samples from albendazole-treated goats. Haemonchus contortus allele frequencies in codons 167 and 200 using pyrosequencing assays were ≤ 7.4% while codon 198 assays failed. Sanger sequencing revealed five novel polymorphisms at codon 198. Noteworthy, an E198L substitution was present in 82% of the samples (L3 and adults) including all post-treatment samples. Moreover, E198V, E198K and potentially E198I, and E198Stop were identified in a few samples. CONCLUSIONS: To our knowledge, this is the first report of E198L in BZ resistant H. contortus and the second where this is the predominant genotype associated with resistance in any strongyle species. Since this variant cannot be quantified using pyrosequencing, the results highlight important limitations in the general applicability of pyrosequencing to quantify BZ resistance genotypes.


Subject(s)
Benzimidazoles/pharmacology , Codon , Drug Resistance/genetics , Goat Diseases/parasitology , Haemonchus/genetics , Polymorphism, Single Nucleotide , Tubulin/genetics , Albendazole/pharmacology , Animals , DNA, Helminth/isolation & purification , Feces/parasitology , Female , Gene Frequency , Genotype , Goat Diseases/drug therapy , Goats , Haemonchus/drug effects , Male , Sequence Analysis, DNA , Sudan , Trichostrongyloidea/genetics , Trichostrongylus/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...