Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Biomed Opt ; 24(5): 1-8, 2019 05.
Article in English | MEDLINE | ID: mdl-31124346

ABSTRACT

Relatively few imaging and sensing technologies are employed to study human lactation physiology. In particular, human mammary development during pregnancy as well as mammary involution after lactation have been poorly described, despite their importance for breast cancer diagnosis and treatment during these phases. Our case study shows the potential of diffuse optical spectroscopic imaging (DOSI) to uniquely study the spatiotemporal changes in mammary tissue composition during the involution of the lactating breast toward its pre-pregnant state. At nine time intervals over a period of eight months after the cessation of breastfeeding, we reconstructed 2-D maps of mammary water content, lipid content, total hemoglobin (THb) concentration, oxygen saturation (StO2), and tissue optical scattering. Mammary lipid content in the nonareolar region showed a significant relative increase of 59%, whereas water content and THb concentration showed a significant relative decrease of 50% and 48%, respectively. Significant changes were also found in StO2 and tissue optical scattering. Our findings are consistent with the gradual replacement of fibroglandular tissue by adipose tissue and vascular regression during mammary involution. Moreover, our data provide unique insight into the dynamics of breast tissue composition and demonstrate the effectiveness of DOSI as a technique to study human lactation physiology.


Subject(s)
Breast/diagnostic imaging , Breast/physiology , Lactation/physiology , Optical Imaging/methods , Adult , Breast Feeding , Female , Hemoglobins/analysis , Humans , Image Processing, Computer-Assisted , Lipids/chemistry , Magnetic Resonance Imaging , Oxygen/metabolism , Patient Safety , Scattering, Radiation , Spectrophotometry
2.
Biomed Opt Express ; 9(9): 4077-4093, 2018 Sep 01.
Article in English | MEDLINE | ID: mdl-30615706

ABSTRACT

We present a novel super-resolution fluorescence lifetime microscopy technique called generalized stepwise optical saturation (GSOS) that generalizes and extends the concept of the recently demonstrated stepwise optical saturation (SOS) super-resolution microscopy [Biomed. Opt. Express9, 1613 (2018)]. The theoretical basis of GSOS is developed based on exploring the dynamics of a two-level fluorophore model and using perturbation theory. We show that although both SOS and GSOS utilize the linear combination of M raw images to increase the imaging resolution by a factor of M , SOS is a special and the simplest case of GSOS. The super-resolution capability is demonstrated with theoretical analysis and numerical simulations for GSOS with sinusoidal and pulse-train modulations. Using GSOS with pulse-train modulation, super-resolution and fluorescence lifetime imaging microscopy (FLIM) images can be obtained simultaneously. The super-resolution FLIM capability is experimentally demonstrated with a cell sample on a custom-built two-photon frequency-domain (FD) FLIM system based on radio frequency analog signal processing. To our knowledge, this is the first implementation of super-resolution imaging in FD-FLIM.

SELECTION OF CITATIONS
SEARCH DETAIL
...