Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Nanomedicine ; 17: 2753-2776, 2022.
Article in English | MEDLINE | ID: mdl-35782018

ABSTRACT

Background: The low entrapment efficiency of the hydrophilic drugs such as brimonidine tartrate (BRT) in liposomes represents a challenge that requires interventions. Gelatinized core liposomes (GCLs) were fabricated to increase the drug entrapment, corneal penetration, and physical stability of the investigated molecule. Research Design and Methods: GCLs encapsulating BRT were prepared and optimized utilizing D-optimal design (DOD). The effect of plasticizer incorporation on the physicochemical characteristics and on the in vivo performance was studied. The optimized formulations were investigated for pH, rheological properties, morphological characteristics, in vitro release profiles, biological performance, safety profile. The effects of storage and gamma sterilization were also investigated. Results: The results revealed the great success of the prepared formulations to achieve high entrapment efficiency reaching 98% after a maturation period of 10 days. The addition of glycerol as plasticizer significantly minimized the particle size and shortened the maturation period to 7 days. The selected formulations were stable for 3 months after gamma sterilization. The formulations showed significant lowering of intra-ocular pressure (IOP) in glaucomatous rabbits with sustainment of the pharmacological effect for 24 hours compared to drug solution. Conclusions: Enhanced in vitro and in vivo profiles of brimonidine tartrate loaded gelatinized-core-liposomes were obtained.


Subject(s)
Glaucoma , Liposomes , Animals , Brimonidine Tartrate , Intraocular Pressure , Liposomes/chemistry , Plasticizers , Rabbits
2.
Eur J Pharm Sci ; 158: 105648, 2021 Mar 01.
Article in English | MEDLINE | ID: mdl-33227347

ABSTRACT

Glaucoma, being asymptomatic for relatively late stage, is recognized as a worldwide cause of irreversible vision loss. The eye is an impervious organ that exhibits natural anatomical and physiological barriers which renders the design of an efficient ocular delivery system a formidable task and challenge scientists to find alternative formulation approaches. In the field of glaucoma treatment, smart delivery systems for targeting have aroused interest in the topical ocular delivery field owing to its potentiality to oppress many treatment challenges associated with many of glaucoma types. The current momentum of nano-pharmaceuticals, in the development of advanced drug delivery systems, hold promises for much improved therapies for glaucoma to reduce its impact on vision loss. In this review, a brief about glaucoma; its etiology, predisposing factors and different treatment modalities has been reviewed. The diverse ocular drug delivery systems currently available or under investigations have been presented. Additionally, future foreseeing of new drug delivery systems that may represent potential means for more efficient glaucoma management are overviewed. Finally, a gab-analysis for the required investigation to pave the road for commercialization of ocular novel-delivery systems based on the nano-technology are discussed.


Subject(s)
Glaucoma , Drug Delivery Systems , Eye , Glaucoma/drug therapy , Humans , Nanotechnology
SELECTION OF CITATIONS
SEARCH DETAIL
...