Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Sci Pollut Res Int ; 27(17): 21777-21789, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32281065

ABSTRACT

This is the first study on the biosorption of Cu2+ and reactive yellow 145 (RY145) dye by citric acid (CA), NaOH, and heat-treated Chlorella vulgaris (Cv). Influence of contact time, initial adsorptive concentration, and biomass dosage on the biosorption process was explored. The biosorption kinetics and isotherm were comprehensively investigated as well. The Fourier transform infrared analysis proved the successful insertion of carbonyl groups on Cv surface by CA modification and the intensification of all Cv functional groups by heat treatment. CA modified Cv was the best biosorbent for RY145, 0.5 g/L removes 97% of 10 mg/L solution (pHi 2) in 40 min. The biosorption was favorable, occurred via the formation of a monolayer of RY145 on the homogenous surface of CA-modified Cv and followed the pseudo-second-order kinetics. On the other hand, heat-treated Cv was the best biosorbent for Cu2+, 0.5 g/L removes 92% of 10 mg/L solution (pHi 5) in 5 min. The biosorption of Cu2+ on heat-treated Cv was complex and involves more than one mechanism. The Langmuir theoretical monolayer saturation capacity of RY145 on CA-modified Cv was comparable to other biosorbents, while that of Cu2+ on heat-treated Cv was drastically superior.


Subject(s)
Chlorella vulgaris , Water Pollutants, Chemical , Adsorption , Biodegradation, Environmental , Biomass , Hydrogen-Ion Concentration , Kinetics , Metals , Spectroscopy, Fourier Transform Infrared , Thermodynamics
2.
ACS Omega ; 5(12): 6834-6845, 2020 Mar 31.
Article in English | MEDLINE | ID: mdl-32258919

ABSTRACT

In this study, natural clay (NC) was collected from Saudi Arabia and modified by cocamidopropyl betaine (CAPB) at different conditions (CAPB concentration, reaction time, and reaction temperature). NC and modified clay (CAPB-NC) were characterized using X-ray diffraction, thermogravimetric analysis, Fourier transform infrared spectroscopy, field-emission scanning electron microscopy, and N2 adsorption at 77 K. The adsorption efficiency of NC and CAPB-NC toward Pb2+ and reactive yellow 160 dye (RY160) was evaluated. The adsorption process was optimized in terms of solution initial pH and adsorbent dosage. Finally, the adsorption kinetics and isotherms were studied. The results indicated that NC consists of agglomerated nonporous particles composed of quartz and kaolinite. CAPB modification reduced the specific surface area and introduced new functional groups by adsorbing on the NC surface. The concentration of CAPB affects the adsorption of RY160 tremendously; the optimum concentration was 2 times the cation exchange capacity of NC. The equilibrium adsorption capacity of CAPB-NC toward RY160 was about 6 times that of NC and was similar for Pb2+. The adsorption process followed the pseudo-second-order kinetics for both adsorptive. RY160 adsorption on CAPB-NC occurs via multilayer formation while Pb2+ adsorption on NC occurs via monolayer formation..

3.
Environ Sci Pollut Res Int ; 22(16): 12035-49, 2015 Aug.
Article in English | MEDLINE | ID: mdl-25874433

ABSTRACT

The present work involves the preparation of novel adsorbent materials by the insolubilization and hybridization of humic acid (HA) with carbon. The prepared materials were characterized by N2 adsorption, elemental analysis, Fourier transform infrared spectroscopy, scanning electron microscopy, transmission electron microscopy, solid-state (13)C cross polarization magic angle spinning nuclear magnetic resonance, and low-field nuclear magnetic resonance (NMR) relaxometry on wetted samples. The water solubility of these materials and the lack of effect of oxidants were also confirmed. With this background, the adsorption capacities toward phenol, 2,4,6-tricholrophenol, and atrazine were evaluated, using these as model compounds for organic micropollutants of concern in water. Experimental results show that the prepared materials are mesoporous and have a higher surface area than humic acid and even than the porous carbon in the case of carbon coating. They retain the basic features of the starting materials with lowered functional group content. Moreover, there are interesting new features. NMR relaxometry shows that equilibration of water uptake is very fast, making use in water simple. They have higher adsorption capacities than the pure materials, and they can be applied under a wide range of environmental conditions.


Subject(s)
Atrazine/analysis , Carbon/chemistry , Humic Substances/analysis , Phenols/analysis , Water Pollutants, Chemical/analysis , Adsorption , Magnetic Resonance Spectroscopy , Microscopy, Electron, Scanning , Microscopy, Electron, Transmission , Porosity , Solubility , Spectroscopy, Fourier Transform Infrared
4.
J Adv Res ; 4(4): 367-74, 2013 Jul.
Article in English | MEDLINE | ID: mdl-25685442

ABSTRACT

The present work represents the biosorption of Cd(II) and Pb(II) from aqueous solution onto the biomass of the blue green alga Anabaena sphaerica as a function of pH, biosorbent dosage, contact time, and initial metal ion concentrations. Freundlich, Langmuir, and Dubinin-Radushkevich (D-R) models were applied to describe the biosorption isotherm of both metals by A. sphaerica biomass. The biosorption isotherms studies indicated that the biosorption of Cd(II) and Pb(II) follows the Langmuir and Freundlish models. The maximum biosorption capacities (qmax ) were 111.1 and 121.95 mg/g, respectively, at the optimum conditions for each metal. From the D-R isotherm model, the mean free energy was calculated to be 11.7 and 14.3 kJ/mol indicating that the biosorption mechanism of Cd(II) and Pb(II) by A. sphaerica was chemisorption. The FTIR analysis for surface function group of algal biomass revealed the existence of amino, carboxyl, hydroxyl, and carbonyl groups, which are responsible for the biosorption of Cd(II) and Pb(II). The results suggested that the biomass of A. sphaerica is an extremely efficient biosorbent for the removal of Cd(II) and Pb(II) from aqueous solutions.

SELECTION OF CITATIONS
SEARCH DETAIL
...