Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Polymers (Basel) ; 15(5)2023 Feb 23.
Article in English | MEDLINE | ID: mdl-36904350

ABSTRACT

Conducting poly orthophenylene diamine polymer (PoPDA) was synthesized via the oxidative polymerization route. A poly(o-phenylene diamine) (PoPDA)/titanium dioxide nanoparticle mono nanocomposite [PoPDA/TiO2]MNC was synthesized using the sol-gel method. The physical vapor deposition (PVD) technique was successfully used to deposit the mono nanocomposite thin film with good adhesion and film thickness ≅ 100 ± 3 nm. The structural and morphological properties of the [PoPDA/TiO2]MNC thin films were studied by X-ray diffraction (XRD) and scanning electron microscope (SEM). The measured optical properties of the [PoPDA/TiO2]MNC thin films such as reflectance (R) in the UV-Vis-NIR spectrum, absorbance (Abs), and transmittance (T) were employed to probe the optical characteristics at room temperatures. As well as the calculations of TD-DFT (time-dependent density functional theory), optimization through the TD-DFTD/Mol3 and Cambridge Serial Total Energy Bundle (TD-DFT/CASTEP) was employed to study the geometrical characteristics. The dispersion of the refractive index was examined by the single oscillator Wemple-DiDomenico (WD) model. Moreover, the single oscillator energy (Eo), and the dispersion energy (Ed) were estimated. The obtained results show that thin films based on [PoPDA/TiO2]MNC can be utilized as a decent candidate material for solar cells and optoelectronic devices. The efficiency of the considered composites reached 19.69%.

2.
Nanomaterials (Basel) ; 12(15)2022 Jul 27.
Article in English | MEDLINE | ID: mdl-35957013

ABSTRACT

Polypyrrole (PPy) is a conducting polymer with attractive thermoelectric (TE) properties. It is simple to fabricate and modify its morphology for enhanced electrical conductivity. However, such improvement is still limited to considerably enhancing TE performance. In this case, a single-wall carbon nanotube (SWCNT), which has ultrathin diameters and exhibits semi-metallic electrical conductivity, might be a proper candidate to be combined with PPy as a core shell one-dimensional (1D) nanocomposite for higher TE power generation. In this work, core shell nanocomposites based on SWCNT/PPy were fabricated. Various amounts of pyrrole (Py), which are monomer sources for PPy, were coated on SWCNT, along with methyl orange (MO) as a surfactant and ferric chloride as an initiator. The optimum value of Py for maximum TE performance was determined. The results showed that the SWCNT acted as a core template to direct the self-assembly of PPy and also to further enhance TE performance. The TE power factor, PF, and figure of merit, zT, values of the pure PPy were initially recorded as ~1 µW/mK2 and 0.0011, respectively. These values were greatly increased to 360 µW/mK2 and 0.09 for the optimized core shell nanocomposite sample. The TE power generation characteristics of the fabricated single-leg module of the optimized sample were also investigated and confirmed these findings. This enhancement was attributed to the uniform coating and good interaction between PPy polymer chains and walls of the SWCNT through π-π stacking. The significant enhancement in the TE performance of SWCNT/PPy nanocomposite is found to be superior compared to those reported in similar composites, which indicates that this nanocomposite is a suitable and scalable TE material for TE power generation.

3.
Environ Technol ; 43(16): 2405-2417, 2022 Jun.
Article in English | MEDLINE | ID: mdl-33494654

ABSTRACT

In this study anodic oxidation of Cr2(SO4)3 was carried out in an air-sparged divided parallel plate cell. Variables studied were current density, Cr2(SO4)3 concentration, and superficial air velocity. The rate constant of Cr2(SO4)3 oxidation was found to increase with increasing current density and Cr2(SO4)3 concentration. The effect of air sparging was found to depend on Cr2(SO4)3 concentrations, at high Cr2(SO4)3 concentration (> 0.1 M) air sparging does not affect the rate constant of the reaction denoting that the reaction is charge transfer controlled. As Cr2(SO4)3 concentration decreases below 0.1 M the reaction becomes under mixed diffusion and chemical control and the rate constant increases with increasing air superficial velocity, the lower Cr2(SO4)3 concentration the higher the contribution of diffusion to the reaction rate. The current efficiency of the process ranged from 20 to 85% depending on current density and Cr2(SO4)3 concentration. Electrical energy consumption which ranged from 1.8 to 14.4 kW h/kg of Cr6+ was found to increase with increasing current density and decreases with increasing Cr2(SO4)3 concentration. Air sparging was found to decrease electrical energy consumption in the case of dilute solutions << 0.1 M Cr2(SO4)3.

4.
Polymers (Basel) ; 13(2)2021 Jan 16.
Article in English | MEDLINE | ID: mdl-33467017

ABSTRACT

Conducting polymers have attracted significant attention due to their easy fabrication, morphology modification, and their electrical properties. Amongst them, polypyrrole (PPy) has attractive thermoelectric (TE) properties. Engineering of this polymer in one-dimensional (1D) nanostructured form is found to enhance its TE performance. This was achieved in the present work by using multi-walled carbon nanotubes (MWCNTs) as a core template to direct the self-assembly of PPy and also to further enhance its TE performance. The growth of PPy on the sidewalls of MWCNTs was performed in an acidic medium based oxidative in situ polymerization. Various concentrations of MWCNTs within the range 1.1-14.6 wt.% were used to form the MWCNTs/PPy nanocomposites in 1D core-shell structures. The morphology and microstructure results of the produced nanocomposite samples showed that this MWCNTs were successfully coated by thick and thin layers of PPy. At low concentrations of MWCNTs, thick layers of PPy are formed. While at high concentrations thin layers are coated. The formed 1D nanocomposites have enhanced TE performance, particularly those containing higher contents of MWCNTs. The power factor and figure of merit values for the formed 1D nanocomposites recorded around 0.77 µV/mK2 and 1 × 10-3 at room temperature (RT), respectively. This enhancement was attributed to the perfect coating and good interaction between PPy and MWCNT through π-π stacking between the polymer chains and these nanotubes. These results might be useful for developing future TE materials and devices.

5.
Molecules ; 24(24)2019 Dec 14.
Article in English | MEDLINE | ID: mdl-31847377

ABSTRACT

In this study, microcellular polyurethane (PU)-natural fiber (NF) biocomposites were fabricated. Polyurethanes based on castor oil and PMDI were synthesized with varying volume ratios of sisal fiber. The effect of natural fiber treatment using water and alkaline solution (1.5% NaOH) and load effect were investigated. Biocomposites were mechanically and physically investigated using tensile, viscoelasticity, and water absorption tests. The interfacial adhesion between PU and sisal fiber was studied using SEM. Short NF loads (3%) showed a significant improvement in the mechanical properties of the PU-sisal composite such as modulus of elasticity, yield and tensile strength up to 133%, 14.35 % and 36.7% respectively. Viscoelastic measurements showed that the composites exhibit an elastic trend as the real compliance (J') values were higher than those of the imaginary compliance (J''). Increasing NF loads resulted in a decrease of J'. Applying variable temperatures (120-80 °C) caused an increase in the stiffness at different frequencies.


Subject(s)
Polyurethanes/chemistry , Textiles/analysis , Elastic Modulus , Materials Testing , Molecular Structure , Rheology , Temperature , Tensile Strength
6.
Membranes (Basel) ; 8(1)2018 Mar 05.
Article in English | MEDLINE | ID: mdl-29510555

ABSTRACT

In this work, PVDF homopolymer was blended with PVDF-co-HFP copolymer and studied in terms of morphology, porosity, pore size, hydrophobicity, permeability, and mechanical properties. Different solvents, namely N-Methyl-2 pyrrolidone (NMP), Tetrahydrofuran (THF), and Dimethylformamide (DMF) solvents, were used to fabricate blended PVDF flat sheet membranes without the introduction of any pore forming agent, through a non-solvent induced phase separation (NIPS) technique. Furthermore, the performance of the fabricated membranes was investigated for pressure and thermal driven applications. The porosity of the membranes was slightly increased with the increase in the overall content of PVDF and by the inclusion of PVDF copolymer. Total PVDF content, copolymer content, and mixed-solvent have a positive effect on mechanical properties. The addition of copolymer increased the hydrophobicity when the total PVDF content was 20%. At 25% and with the inclusion of mixed-solvent, the hydrophobicity was adversely affected. The permeability of the membranes increased with the increase in the overall content of PVDF. Mixed-solvents significantly improved permeability.

SELECTION OF CITATIONS
SEARCH DETAIL
...