Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Poult Sci ; 103(8): 103914, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38905757

ABSTRACT

Delivering natural antioxidants via in ovo feeding holds promise for enhancing the antioxidant status and performance of chickens. Therefore, The objective of this study was to evaluate the impacts of in ovo feeding during early embryonic development using grape pomace extract as a natural antioxidant on hatchability, productive performance, immune response, and antioxidant status in broilers. A total of 900 fertile broiler eggs from the Arbor Acres strain were utilized. Each egg was individually weighed, with egg weights ranging from 61.88 ± 3 g. On the 17.5th d of incubation (DOI), the fertile eggs were divided into 6 groups. The first treatment group was untreated and designated as the control (C). The second group was the sham group (Sh), receiving a simulated injection. The third group, designated as the vehicle group (V), was injected with 100 µl of dimethyl sulfoxide (DMSO). The fourth group received an injection of 100 µL of grape pomace dissolved in DMSO at a concentration of 2 mg (T2). Similarly, the fifth and sixth groups were injected with 100 µL of grape pomace dissolved in DMSO at concentrations of 4 mg and 6 mg, (T4), (T6) respectively. Subsequently, all groups were raised under uniform conditions in terms of management, environment, and nutrition till 5 wk of age. The grape pomace extract (GPE), obtained is rich in total phenolic content (16.07 mg/g), total flavonoid content (7.42 mg/g), and total anthocyanin (8.37 mg/g). Grape pomace extract has exhibited significant antioxidant properties as evidenced by its effectiveness in DPPH scavenging and reducing power assays. Significant improvements in body weight at hatch were observed with in ovo feeding of grape pomace extract, particularly at the 4 mg level, surpassing the effectiveness of the 2 mg and 6 mg grape pomace levels, and this enhancement in body weight continued until the age of 5 wk. GPE injection also led to a significant reduction in cholesterol levels, with the lowest levels recorded for the T4 group. Plasma total Antioxidant Capacity (TAC) levels were significantly elevated in groups treated with T4, T6, and T2 compared to the control group. Conversely, the control group showed a significant increase (P < 0.01) in plasma malondialdehyde (MDA) levels. The immune response of hatched chicks from grape pomace extract-injected groups, especially the T4 group, exhibited improvement through increased IgM and IgG. These findings demonstrate that in ovo feeding of GPE, particularly at a dosage of 4 mg, enhances growth performance, immune response, and antioxidant status in hatched chicks. Thus, administering natural antioxidants, such as grape pomace extract, to developing broiler embryos via in ovo feeding could serve as a valuable strategy for enhancing the subsequent post-hatch productive performance, as well as bolstering the antioxidant and immunological status of broiler chicks.

2.
Sci Rep ; 14(1): 94, 2024 01 02.
Article in English | MEDLINE | ID: mdl-38168551

ABSTRACT

The short periods of incubation during egg storage (SPIDES) method enhances the quality of chicks and improves hatching rates. Additionally, embryonic thermal conditioning (TC) is a technique used to enhance thermotolerance in birds. Previous studies have evaluated the effects of SPIDES and embryonic TC separately. Yet, our hypothesis postulated that a synergistic effect could be achieved by integrating TC and SPIDES, thereby enhancing the broilers' resilience to thermal stress. We conducted an experiment involving 800 Ross broiler eggs, divided into two groups. The first group, referred to as S0, was maintained under standard storage room conditions and acted as our control group. The second group, known as S1, underwent a process called SPIDES for 5 h at a temperature of 37.8 ± 0.1 °C, on three occasions: days 5, 10, and 15 following egg collection. Upon reaching the 14th day of incubation (DOI), each of these primary groups was randomly subdivided into two equal subgroups. The control subgroup, designated as TC0, remained in the usual incubation conditions. Meanwhile, the other subgroup, TC1, was subjected to prenatal heat conditioning at a temperature of 39.5 ± 0.1 °C for 6 h per day, commencing on the 14th embryonic day (E) and extending until the 18th embryonic day (E). This experimental setup resulted in four distinct experimental subgroups: S0TC0, S1TC0, S0TC1, and S1TC1. The findings indicated that the combined application of SPIDES and TC had a significant positive effect on chick performance after hatching. Specifically, the (S1TC1) group exhibited the heaviest live body weight (LBW) and body weight gain (BWG) at the marketing age in comparison to the other groups. Furthermore, both SPIDES and TC had a positive influence on the relative weights of breast muscles and their histological measurements. The (S1TC1) group displayed significantly higher values in terms of the relative weight of breast muscles and the number of myocytes. In conclusion, SPIDES and TC have beneficial effects on pre- and post-hatch characteristics of broiler chicks up until the marketing age. Additionally, TC techniques improve chick performance, particularly under conditions of heat stress, and enhance the yield of breast muscle in later stages of life.


Subject(s)
Chickens , Thermotolerance , Animals , Chickens/physiology , Heat-Shock Response , Temperature , Weight Gain
3.
J Therm Biol ; 116: 103640, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37542840

ABSTRACT

Short Periods of Incubation During Egg Storage (SPIDES) approach improves chick quality and hatching rates. Also, embryonic thermal conditioning (TC) is a strategy for enhancing thermotolerance in avian species. Until now, evaluating the effect of either SPIDES or embryonic TC effects has only been separately conducted, so we hypothesized that combining TC and SPIDES may enhance the response of broilers to thermal stress. Eight hundred Ross broiler eggs were divided into two groups; the first one was kept under appropriate storage room conditions, S0 (control) The 2nd was subjected to SPIDES for 5 h at 37.8 ○C ± 0.1 three times at days 5, 10, and 15 (S1) after egg collection respectively. On the 14th day of incubation (DOI) each of the two main groups was randomly divided into two equal subgroups; the control one was left under the appropriate incubation settings (TC0) whereas the other received prenatal heat conditioning (TC1) at 39.5 ○C ± 0.1 for 6 h/d from the 14th to the 18th embryonic day (E), resulting finally in four experimental subgroups (S0TC0, S1TC0, S0TC1 & S1TC1). RESULTS: showed that SPIDES treatment improved the hatchability of the stored eggs by almost 20% compared to untreated eggs. A combination of SPIDES and TC (S1TC1) increased significantly the levels of Immunoglobulin (IgG and IgM) production at hatch and heat-stressed birds. Our findings revealed that the hepatic heat shock proteins (hsp70, 90 A,90 B, 60 and hspA9), antioxidants-related genes (CAT, and SOD2), and NADPH4 were significantly downregulated in the thermally conditioned group that challenged with thermal stress conditions. As opposed to that, the SPIDES group showed a significant increase in hepatic heat shock proteins, antioxidants-related genes, and NADPH4 when subjected to thermal-stress conditions. In conclusion, the combination of SPIDES and TC has a positive effect on some pre and post-hatch traits of broiler chicks. Under heat stress challenge, thermal conditioning can modify the expression of antioxidant-related genes and Hsps, leading to the enhanced acquisition of thermotolerance as evidenced by lower expression of Hsps and NADPH4. While SPIDES does not have a significant role in thermotolerance acquisition.


Subject(s)
Chickens , Heat-Shock Proteins , Animals , Chickens/physiology , Heat-Shock Proteins/genetics , Heat-Shock Proteins/metabolism , Antioxidants/metabolism , Heat-Shock Response , Immunocompetence
4.
J Therm Biol ; 103: 103169, 2022 Jan.
Article in English | MEDLINE | ID: mdl-35027188

ABSTRACT

The poultry industry faces several obstacles and challenges, including the changes in global temperature, increase in the per capita demand for meat and eggs, and the emergence and spread of various diseases. Among these, environmental challenges are one of the most severe hurdles impacting the growth and productivity of poultry. In particular, the increasing frequency and severity of heat waves over the past few years represent a major challenge, and this is expected to worsen in the coming decades. Chickens are highly susceptible to high ambient temperatures (thermal stress), which negatively affect their growth and productivity, leading to enormous economic losses. In the light of global warming, these losses are expected to increase in the near future. Specifically, the worsening of climate change and the rise in global temperatures have augmented the adverse effects of heat on poultry production worldwide. At present, the world population is approximately 7.9 billion, and it has been predicted to reach 9.3 billion by 2050 and approximately 11 billion by 2100, implying a great demand for protein supply; therefore, strategies to mitigate future poultry challenges must be urgently devised. To date, several mitigation measures have been adopted to minimize the negative effects of heat stress in poultry. Of these, thermal acclimation at the postnatal stage or throughout the embryonic stages has been explored as a promising approach; however, for large-scale application, this approach warrants further investigation to determine the suitable temperature and poultry age. Moreover, molecular mechanisms governing thermal conditioning are poorly understood. To this end, we sought to expand our knowledge of thermal conditioning in poultry, which may serve as a valuable reference to improve the thermotolerance of chickens via nutritional management and vitagene regulation. Vitagenes regulate the responses of poultry to diverse stresses. In recent years, nutritionists have paid close attention to bioactive compounds such as resveratrol, curcumin, and quercetin administered alone or in combination. These compounds activate vitagenes and other regulators of the antioxidant defense system, such as nuclear factor-erythroid 2-related factor 2. Overall, thermal conditioning may be an effective strategy to mitigate the negative effects of heat stress. In this context, the present review synthesizes information on the adverse impacts of thermal stress, elucidating the molecular mechanisms underlying thermal conditioning and its effects on the acquisition of tolerance to acute heat stress in later life. Finally, the role of some polyphenolic compounds, such as resveratrol, curcumin, and quercetin, in attenuating heat stress through the activation of the antioxidant defense system in poultry are discussed.


Subject(s)
Heat-Shock Response , Poultry Diseases/etiology , Poultry/physiology , Animals , Global Warming , Poultry Diseases/prevention & control , Poultry Products/standards , Thermotolerance
SELECTION OF CITATIONS
SEARCH DETAIL
...