Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Environ Monit Assess ; 191(11): 699, 2019 Oct 30.
Article in English | MEDLINE | ID: mdl-31667650

ABSTRACT

Effects of industrial and municipal wastewaters on the freshwater snail, Lanistes carinatus, were evaluated. Concentrations of some chemicals in some effluents were greater than permissible limits promulgated internationally by various jurisdictions. Pesticides and polychlorinated biphenyls (PCBs) observed in tissues of snails collected during summer were greater than those measured in snails collected during winter. Catalase activities observed during autumn were greater than those observed during other seasons. Activities of catalase were greater at all sites near sources of contamination than in snails from the reference site (S6). Lactate dehydrogenase activity was also greater at all sites relative to the location designated as the reference (S6), at which activities did not exceed 8.10 U/L. Patterns of genomic DNA in snails, as determined by use of OPA-02 primer, were significantly different among sites. Location S1 (Belshay village) exhibited 11 bands, followed by S2 (El-Demer zone) and S5 (Rosetta branch) which exhibited 6 bands. In contrast, all sites exhibited greater numbers of bands when the OPA-08 primer was used. Thus, DNA fingerprinting, lactate dehydrogenase, and catalase offer useful biomarkers in ecotoxicology and risk assessment programs.


Subject(s)
Environmental Monitoring , Organic Chemicals/toxicity , Snails/physiology , Water Pollutants, Chemical/toxicity , Animals , Catalase , Ecotoxicology , Egypt , Fresh Water , Organic Chemicals/analysis , Pesticides , Polychlorinated Biphenyls , Seasons , Water Pollutants, Chemical/analysis
2.
Hum Exp Toxicol ; 38(6): 734-745, 2019 Jun.
Article in English | MEDLINE | ID: mdl-30935239

ABSTRACT

A quantitative assessment of the genotoxicity of silver nanoparticles (AgNPs) ascribed to its transplacental transfer and tissue distribution in pregnant rats was carried out in this study. A single intravenous (i.v.) injection of AgNPs with a size range from 4.0 to 17.0 nm was administered to pregnant rats at a dose of 2 mg/kg b.w. on the 19th day of gestation. Five groups beside control, each of the five rats were euthanized after 10 min, 1, 6, 12, or 24 h, respectively. The accumulation of nanoparticles (NPs) in mother and fetal tissues was quantified by inductively coupled plasma optical emission spectroscopy, where the highest accumulation level was recorded in maternal blood (0.523 µg/ml) after 24 h of administration. AgNPs induced accumulation in spleen tissue higher than placenta and fetal tissue homogenates. The data showed significantly detected levels of 8-hydroxydeoxyguanosine in all collected samples from administered animals compared with untreated individuals. Level of 8-OHdG in amniotic fluid exhibited the greatest values followed by maternal spleen, kidneys, and liver, respectively. Investigation by transmission electron microscope showed that the transfer of AgNPs through placental wall caused indentation of nuclei, clumped chromatin, pyknotic nuclei, and focal necrotic areas, while AgNPs appeared mainly accumulated in the macrophages of the spleen. Therefore, the data assume that the genotoxicity studies of AgNPs must be recommended during a comprehensive assessment of the safety of novel types of NPs and nanomaterials. Additionally, exposure to AgNPs must be prevented or minimized during pregnancy or prenatal periods.


Subject(s)
8-Hydroxy-2'-Deoxyguanosine/metabolism , DNA Damage , Maternal-Fetal Exchange , Metal Nanoparticles/toxicity , Silver/toxicity , Amniotic Fluid/metabolism , Animals , Female , Fetus/metabolism , Kidney/metabolism , Liver/metabolism , Microscopy, Electron, Transmission , Placenta/metabolism , Placenta/ultrastructure , Pregnancy , Rats, Wistar , Silver/blood , Silver/pharmacokinetics , Spleen/metabolism , Spleen/ultrastructure
3.
Chemosphere ; 93(6): 1131-8, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23987578

ABSTRACT

The oxidative stress in the digestive gland of the land snail Helix aspersa was considered as a bioindicator for atmospheric pollution with heavy metals from several industries and vehicular traffic in Kafr El-Zayat city. Regional means of heavy metals concentration of all sites were 0.71, 7.09, 0.71, 2.68, 41.44 and 18.01 mg kg(-1) wet mass for Cd, Mn, Ni, Pb, Zn and Cu, respectively. In addition, the highest values of Cd concentrations were found 1.22 and 1.73 mg kg(-1) wet mass in S1 (Potato International Center) and S4 (The Nile bank), respectively. Lactate dehydrogenase (D-LDH(and recorded lipid peroxidation (LPO) levels were significantly high in S1 and S2 (Traffic station). On the other hand, the highest activity of catalase (CAT) was found in S2 (194.04% of control), while the activity of glutathione peroxidase (GPx) reached the highest significant value in S1. As a matter of fact, glutathione-S-transferase (GST) and glutathione reductase (GR) activities were significantly higher in polluted sites than in reference zone. In contrast, the glutathione (GSH) concentration of exposed animals showed significant decrease in all sites, with the lowest value in S1 (57.61% of control). However, metallothioneins concentration (MT) showed no significant difference in all sites except in S1 which accounted for 127.81% of control. Therefore, the overall results of this study showed the importance of H. aspersa as a sentinel organism for biomonitoring the biologic impact of atmospheric pollution in urban areas.


Subject(s)
Environmental Monitoring/methods , Metals, Heavy/toxicity , Soil Pollutants/toxicity , Animals , Catalase/metabolism , Cities , Glutathione/metabolism , Glutathione Peroxidase/metabolism , Glutathione Transferase/metabolism , Helix, Snails , Metallothionein/metabolism , Oxidative Stress
4.
Chemosphere ; 63(9): 1491-8, 2006 Jun.
Article in English | MEDLINE | ID: mdl-16289700

ABSTRACT

The study was carried out from spring 1999 to spring 2001 to monitor the residue levels of organophosphorus pollutants (OPP) in aquatic environment of the drainage canal surrounding a pesticide factory at Damietta Governorate. Water, sediment, and fish samples were collected at six different seasonal periods. OPPs were analyzed by GLC and confirmed using GC-MS. Chlorpyrifos, chlorpyrifos-methyl, malathion, diazinon, pirimiphos-methyl and profenofos were detected in most samples. Chlorpyrifos was dominant in all water and sediment samples. It was ranged from 24.5 to 303.8 and 0.9 to 303.8 ppb in water and sediment samples, respectively. Diazinon level was slightly similar to chlorpyrifos in fish samples. Data based on the grand total concentration of OPP showed that the most polluted samples were collected either at spring 1999 or autumn 2000. They were 675.5 and 303.8 ppb in water samples and 43.0 and 52.2 ppb in fish collected at spring 1999 and autumn 2000, respectively. The obtained results are in parallel to that found in case of cholinesterase activity where the activity of both acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) was declined at these seasonal period. The activity levels of AChE and BuChE were found to be 77.18% and 59.67% of control at spring 1999 and 78.62% and 85.80% of control, at autumn 2000, respectively. Thus, AChE and BuChE could be used as biomarkers for tracing and biomonitoring OPP pollution.


Subject(s)
Biomarkers/analysis , Cholinesterases/analysis , Environmental Monitoring/methods , Organophosphorus Compounds/analysis , Water Pollutants, Chemical/analysis , Animals , Chemical Industry , Chlorpyrifos/analysis , Diazinon/analysis , Egypt , Fishes/metabolism , Geologic Sediments , Industrial Waste , Pesticide Residues/analysis , Sewage
SELECTION OF CITATIONS
SEARCH DETAIL
...