Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Front Pharmacol ; 15: 1384834, 2024.
Article in English | MEDLINE | ID: mdl-38751780

ABSTRACT

Introduction: Administration of high doses of acetaminophen (APAP) results in liver injury. Oxidative stress and iron overload play roles in the pathogenesis of APAP-induced hepatotoxicity. The present study assessed the potential hepatoprotective effects of phytic acid (PA), a natural antioxidant and iron chelator, on APAP-induced hepatotoxicity and the possible underlying mechanism through its effects on CYP2E1 gene expression, iron homeostasis, oxidative stress, and SIRT-1 expression levels. Methods: Twenty-four adult male albino mice were used in this study. Mice were divided into four groups (six mice in each group): control, APAP-treated, PA-treated and APAP + PA-treated groups. Liver function tests, serum and liver tissue iron load were evaluated in all the study groups. Hepatic tissue homogenates were used to detect oxidative stress markers, including malondialdehyde (MDA) and reduced glutathione (GSH). Histological hepatic evaluation and immunohistochemistry of SIRT-1 were performed. Quantitative real-time PCR was used for the assessment of CYP2E1 and SIRT-1 gene expressions. APAP-induced biochemical and structural hepatic changes were reported. Results: PA administration showed beneficial effects on APAP-induced hepatotoxicity through improvements in liver functions, decreased CYP2E1 gene expression, decreased serum and liver iron load, decreased MDA, increased GSH, increased SIRT-1 expression level and improvement in hepatic architecture. Conclusion: Conclusively, PA can be considered a potential compound that can attenuate acetaminophen-induced hepatotoxicity through its role as an iron chelator and antioxidant, as well as the up-regulation of SIRT-1 and down-regulation of CYP2E1.

2.
Article in English | MEDLINE | ID: mdl-38112993

ABSTRACT

Aging represents a complex biological process associated with decline in skeletal muscle functions. Aging impairs satellite cells that serve as muscle progenitor cells. Probiotic supplementation may have many beneficial effects via various mechanisms. We examined the possible effects of probiotics in stimulating the proliferation of myogenic stellate cells in aging rats. Twenty-four male albino Sprague-Dawley rats were classified equally into four groups: adult control, old control, adult + probiotics, and old + probiotics. Probiotics (Lactobacillus LB) were administered gavage at a dose of 1 ml (1 × 109 CFU/ml/day) for 4 weeks. A significant increase in the relative gastrocnemius weight ratio and improvement of contractile parameters was detected in the old + probiotics group (0.6 ± 0.01) compared to the old control group (0.47 ± 0.01; P < 0.001). Probiotics significantly upregulated the activities of GSH, while NO and MDA were markedly decreased compared to control groups (P ≤ 0.001). Also, probiotics increased the mRNA and protein expressions of myogenin and CD34 (P < 0.05) as determined by real-time PCR and immunohistochemistry. Moreover, the old + probiotics group showed apparent restoration of the connective tissue spaces, reflecting the all-beneficial effects of probiotics. Our findings indicated that probiotics attenuated myopathic changes in aging rats probably through activation of the myogenic stellate cells. Probiotics improved the muscle weight, function, antioxidant activity, and myogenic transcription factors of the skeletal muscle.

SELECTION OF CITATIONS
SEARCH DETAIL
...