Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
BMC Plant Biol ; 23(1): 326, 2023 Jun 19.
Article in English | MEDLINE | ID: mdl-37331960

ABSTRACT

Drought is one of the most important wheat production limiting factor, and can lead to severe yield losses. This study was designed to examine the effect of drought stress on wheat physiology and morphology under three different field capacities (FC) viz. 80% (control), 50% (moderate) and 30% (severe drought stress) in a diverse collection of wheat germplasm including cultivars, landraces, synthetic hexaploid and their derivatives. Traits like grain weight, thousand grain weight and biomass were reduced by 38.23%, 18.91% and 26.47% respectively at 30% FC, whereas the reduction rate for these traits at 50% FC were 19.57%, 8.88% and 18.68%. In principal component analysis (PCA), the first two components PC1 and PC2 accounted for 58.63% of the total variation and separated the cultivars and landraces from synthetic-based germplasm. Landraces showed wide range of phenotypic variations at 30% FC compared to synthetic-based germplasm and improved cultivars. However, least reduction in grain weight was observed in improved cultivars which indicated the progress in developing drought resilient cultivars. Allelic variations of the drought-related genes including TaSnRK2.9-5A, TaLTPs-11, TaLTPs-12, TaSAP-7B-, TaPPH-13, Dreb-B1 and 1fehw3 were significantly associated with the phenological traits under drought stress in all 91 wheats including 40 landraces, 9 varieties, 34 synthetic hexaploids and 8 synthetic derivatives. The favorable haplotypes of 1fehw3, Dreb-B1, TaLTPs-11 and TaLTPs-12 increased grain weight, and biomass. Our results iterated the fact that landraces could be promising source to deploy drought adaptability in wheat breeding. The study further identified drought tolerant wheat genetic resources across various backgrounds and identified favourable haplotypes of water-saving genes which should be considered to develop drought tolerant varieties.


Subject(s)
Drought Resistance , Triticum , Triticum/physiology , Plant Breeding , Phenotype , Haplotypes
2.
Genes (Basel) ; 13(12)2022 11 30.
Article in English | MEDLINE | ID: mdl-36553528

ABSTRACT

Water availability is considered as the main limiting factor of wheat growth illuminating the need of cultivars best adapted to drought situations for better wheat production and yield. Among these, the stay-green trait is thought to be related to the ability of wheat plants to maintain photosynthesis and CO2 assimilation, and a detailed molecular understanding of this trait may help in the selection of high-yielding, drought-tolerant wheats. The current study, therefore, evaluated the physiological responses of the selected wheat genotypes under pot-induced water stress conditions through different field capacities. The study also focused on exploring the molecular mechanisms involved in drought tolerance conferred due to the stay-green trait by studying the expression pattern of the selected PSI-associated light-harvesting complex I (LHC1) and PSII-associated LHCII gene families related to pigment-binding proteins. The results revealed that the studied traits, including relative water content, membrane stability index and chlorophyll, were variably and negatively affected, while the proline content was positively enhanced in the studied wheats under water stress treatments. Molecular diagnosis of the selected wheat genotypes using the expression profile of 06 genes, viz. TaLhca1, TaLhca2, TaLhca3, TaLhcb1, TaLhcb4 and TaLhcb6 that encodes for the LHCI and LHCII proteins, indicated variable responses to different levels of drought stress. The results obtained showed the relation between the genotypes and the severity of the drought stress condition. Among the studied genotypes, Chirya-1 and SD-28 performed well with a higher level of gene expression under drought stress conditions and may be used in genetic crosses to enrich the genetic background of common wheat against drought stress.


Subject(s)
Droughts , Triticum , Bread , Dehydration , Genotype
3.
Front Plant Sci ; 13: 1080635, 2022.
Article in English | MEDLINE | ID: mdl-36756229

ABSTRACT

Human health is the main concern related to use of crop products irrigated with contaminated irrigation sources. Present research has been conducted to explore heavy metal status of sewage and industrial wastewater being used up for irrigation purpose in the peri-urban areas of the district Dera Ghazi Khan which has not been explored widely before. The analysis also followed heavy metal detection in the subsequent irrigated soil and vegetables/crop plants in relation to assessment of health risk to the consumer to plan the future monitoring in this area. An unremitting boost of heavy metals into the environment from wastewater irrigation has become a global issue. These heavy metals enter the food chain and pose health assumptions to consumers upon utilization. In the present study, an investigation has been conducted to determine metal concentrations in the wastewater, soil, and different plant species. For wastewater samples, pH, total dissolved solids (TDS), electrical conductivity (EC), and selected heavy metals such as Al, As, Cr, Cu, Fe, Mn, Pb, Zn, and Ni were determined. The mean values of heavy metals in the soil samples were within the WHO/FAO safe limit, while Cr and Pb were the most frequent (100%) among the metals. However, differentiating the sites, the concentration of Cr and Cu, Ni, and Fe were elevated. The metal transfer was highly effective from soil to the growing plants i.e. brinjal, red corn, wheat, tomato, and spinach than other plant species. Among the metals, Cr, Ni, Mn, and Pb in plant samples were exceeding the WHO/FAO safe limit. Health risk index (HRI) have revealed the possible potential risk of heavy metal contaminated plant species in the order of spinach (6.4) > wheat (6.4) > brinjal (5.9) > tomato (4.7) > red corn (4.5) > apple gourd (4.3) > white corn (3.8) > cabbage (3.1) > luffa (2.9). Likewise, HRI of different metals was calculated as Cu (19.6) > Zn (17.9) > Cr (2.95) > Ni (0.85) > Mn (0.48) > Fe (0.15) > Cd (0.11) > Pb (0.05) > As (0.00001). The level of HRI through the use of dietary plants revealed an elevated risk level than the acceptable limit (HRI > 1) for Cu > Zn > Cr in adults. Our findings suggest that there would be a serious health risk to the consumers due to the consumption of these plant species being irrigated with the wastewater. Therefore, a strict regulatory mechanism is proposed for the safety of food plants in the study area including monitoring and recycling of crop plants, and building water treatment plants to remove pollutants and clean wastewater.

4.
Food Funct ; 12(10): 4630-4643, 2021 May 21.
Article in English | MEDLINE | ID: mdl-33912870

ABSTRACT

Here, we investigated the chemical composition of the edible Phlomis aurea oil and its anticancer potential on three human cancer cell lines, as well as its antiviral activity against Herpes simplex-1 (HSV-1). Exploring Phlomis aurea Decne essential oil by gas chromatography coupled with mass spectrometry (GC/MS) revealed the presence of four major components: germacrene D (51.56%), trans-ß-farnesene (11.36%), α-pinene (22.96%) & limonene (6.26%). An antiproliferative effect, as determined by the MTT assay, against human hepatic, breast and colon cancer cell lines, manifested IC50 values of 10.14, 328.02, & 628.43 µg mL-1, respectively. Cytotoxicity assay of the Phlomis oil against Vero cell lines revealed a safe profile within the range of 50 µg ml-1. Phlomis essential oil induced the apoptosis of HepG2 cells through increasing cell accumulation in sub G1 & G2/M phases, decreasing both S & G0/G1 phases of the cell cycle, triggering both caspases-3 &-9, and inhibiting cyclin dependent kinase-2 (CDK2). The antiviral activity of the oil against HSV-1 was investigated using the plaque reduction assay, which showed 80% of virus inhibition. Moreover, the molecular docking in silico study of the four major chemical constituents of the oil at the CDK2 binding site demonstrated marked interactions with the ATP-binding site residues through alkyl & Pi-alkyl interactions. Cell cycle distribution of HepG2 cells was studied using flow cytometry to highlight the apoptotic mechanistic approaches by measuring caspases-3 &-9 and CDK2 activities. Thus, the edible Phlomis oil can be regarded as a candidate for in vivo studies to prove that it is a promising natural antiviral/anticancer agent.


Subject(s)
Antiviral Agents/chemistry , Oils, Volatile/chemistry , Phlomis/chemistry , Plant Extracts/chemistry , Plant Oils/chemistry , Antiviral Agents/pharmacology , Bicyclic Monoterpenes , Binding Sites , Cell Cycle , Cell Line, Tumor , Cyclin-Dependent Kinase 2/chemistry , Egypt , Gas Chromatography-Mass Spectrometry , Hep G2 Cells , Humans , Molecular Docking Simulation , Plant Extracts/pharmacology , Sesquiterpenes , Sesquiterpenes, Germacrane
5.
Cell Mol Biol (Noisy-le-grand) ; 65(4): 53-62, 2019 Apr 30.
Article in English | MEDLINE | ID: mdl-31078153

ABSTRACT

Thyroid hormones regulate the development and maturation of the brain by maintaining levels of neurotransmitters and their related metabolites. The present work emphasizes the neural dysfunction in the brain caused by hypothyroidism and the potential role of Hordeum vulgare (water soluble barley, (B)) in ameliorating these effects. The study was conducted on euothyroid and hypothyroid adult female rats. The induction of hypothyroidism was conducted by oral-administration of neo-mercazole (5.0 mg.kg-1) daily for thirty days prior the study and terminated at the end of the study. The groups were assigned as; euthyroid (EU) and hypothyroid (H) groups and other two groups were treated with 100 mg.kg-1 water soluble barley; daily for one month and assigned as (EU+B) and (H+B) groups. Compared with EU and EU+B groups, a reduction in fT4, and ERK1/2 levels and elevation in TSH in brain tissue, Moreover, a  significant elevation in 8-OH deoxyguanosine and caspase-3 levels, confirmed with increase percentage DNA-damage in the brain and thyroid tissues in hypothyroid control rats. Furthermore, a significant decrease in all monoamines levels in different brain areas and downregulation of dopamine and 5-hydroxytreptamin receptors transcription, with a significant increase in excitatory amino acids and no significant change in the levels inhibitory amino acids were recorded in control hypothyroid group. Treatment of hypothyroid group with Hordeum vulgare improved the above-mentioned adverse impact by ameliorating the thyroid hormone levels with depleting the DNA-degradation and elaborating the levels of neurotransmitters with related receptors and amino acids in brain areas.  Water soluble Hordeum vulgare as a phytonutrient, is safe and efficient agent in ameliorating the neural dysfunction resulting from hypothyroidism status in adult female rats.


Subject(s)
Biogenic Monoamines/metabolism , Hordeum/chemistry , Hypothyroidism/drug therapy , Hypothyroidism/physiopathology , Nervous System/physiopathology , Plant Extracts/therapeutic use , Thyroid Gland/physiopathology , 8-Hydroxy-2'-Deoxyguanosine , Amino Acids/metabolism , Animals , Brain/drug effects , Brain/metabolism , Brain/physiopathology , Caspase 3/metabolism , Deoxyguanosine/analogs & derivatives , Deoxyguanosine/metabolism , Extracellular Signal-Regulated MAP Kinases/metabolism , Female , Membrane Transport Proteins/genetics , Membrane Transport Proteins/metabolism , Nervous System/drug effects , Neurotransmitter Agents/metabolism , Plant Extracts/pharmacology , RNA, Messenger/genetics , RNA, Messenger/metabolism , Rats, Wistar , Thyroid Gland/drug effects , Thyroid Hormones/genetics , Thyroid Hormones/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...