Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 83
Filter
1.
J Natl Cancer Inst ; 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38833676

ABSTRACT

BACKGROUND: The role of Th17 cells in prostate cancer (PCa) is not fully understood. The transcription factor BATF controls the differentiation of Th17 cells. Mice deficient in Batf do not produce Th17 cells. METHODS: In this study, we aimed to characterize the role of Batf-dependent Th17 cells in PCa by crossbreeding Batf knockout (Batf-/-) mice with mice conditionally mutant for Pten. We found that Batf-/- mice had changes in the morphology of prostate epithelial cells compared to normal mice, and Batf-/- mice deficient in Pten (named Batf-) had smaller prostate size and developed fewer invasive prostate adenocarcinomas than Pten-deficient mice with Batf expression (named Batf+). The prostate tumors in Batf- mice showed reduced proliferation, increased apoptosis, decreased angiogenesis and inflammatory cell infiltration, and activation of NF-κB signaling. Moreover, Batf- mice showed significantly reduced IL-23/IL-23R signaling. In the prostate stroma of Batf- mice, IL-23R-positive cells were decreased considerably compared to Batf+ mice. Splenocytes and prostate tissues from Batf- mice cultured under Th17 differentiation conditions expressed reduced IL-23/IL-23R than cultured cells from Batf+ mice. Anti-IL23p19 antibody treatment of Pten-deficient mice reduced prostate tumors and angiogenesis compared to control IgG-treated mice. In human prostate tumors, BATF mRNA level was positively correlated with IL23A and IL-23R but not RORC. CONCLUSION: Our novel findings underscore the crucial role of IL-23/IL23R signaling in mediating the function of Batf-dependent Th17 cells, thereby promoting PCa initiation and progression. This highlights the Batf-IL-23R axis as a promising target for the development of innovative strategies for PCa prevention and treatment.

2.
Viruses ; 15(3)2023 03 21.
Article in English | MEDLINE | ID: mdl-36992502

ABSTRACT

Despite the suppression of human immunodeficiency virus (HIV) replication by combined antiretroviral therapy (cART), 50-60% of HIV-infected patients suffer from HIV-associated neurocognitive disorders (HAND). Studies are uncovering the role of extracellular vesicles (EVs), especially exosomes, in the central nervous system (CNS) due to HIV infection. We investigated links among circulating plasma exosomal (crExo) proteins and neuropathogenesis in simian/human immunodeficiency virus (SHIV)-infected rhesus macaques (RM) and HIV-infected and cART treated patients (Patient-Exo). Isolated EVs from SHIV-infected (SHIV-Exo) and uninfected (CTL-Exo) RM were predominantly exosomes (particle size < 150 nm). Proteomic analysis quantified 5654 proteins, of which 236 proteins (~4%) were significantly, differentially expressed (DE) between SHIV-/CTL-Exo. Interestingly, different CNS cell specific markers were abundantly expressed in crExo. Proteins involved in latent viral reactivation, neuroinflammation, neuropathology-associated interactive as well as signaling molecules were expressed at significantly higher levels in SHIV-Exo than CTL-Exo. However, proteins involved in mitochondrial biogenesis, ATP production, autophagy, endocytosis, exocytosis, and cytoskeleton organization were significantly less expressed in SHIV-Exo than CTL-Exo. Interestingly, proteins involved in oxidative stress, mitochondrial biogenesis, ATP production, and autophagy were significantly downregulated in primary human brain microvascular endothelial cells exposed with HIV+/cART+ Patient-Exo. We showed that Patient-Exo significantly increased blood-brain barrier permeability, possibly due to loss of platelet endothelial cell adhesion molecule-1 protein and actin cytoskeleton structure. Our novel findings suggest that circulating exosomal proteins expressed CNS cell markers-possibly associated with viral reactivation and neuropathogenesis-that may elucidate the etiology of HAND.


Subject(s)
HIV Infections , HIV-1 , Simian Acquired Immunodeficiency Syndrome , Simian Immunodeficiency Virus , Animals , Humans , Macaca mulatta , HIV Infections/complications , Simian Acquired Immunodeficiency Syndrome/complications , Endothelial Cells , Proteomics , Disease Models, Animal , Adenosine Triphosphate , Viral Load
3.
Cancers (Basel) ; 14(4)2022 Feb 11.
Article in English | MEDLINE | ID: mdl-35205655

ABSTRACT

BACKGROUND: Tyrosine kinase inhibitors (TKI) were initially demonstrated as an efficacious treatment for renal cell carcinoma (RCC). However, after a median treatment length of 14 months, a vast majority of patients develop resistance. This study analyzed a combination therapy of tipifarnib (Tipi) + sunitinib that targeted exosome-conferred drug resistance. METHODS: 786-O, 786-O-SR (sunitinib resistant), A498, A498-SR, Caki-2, Caki-2-SR, and 293T cells were cultured. Exosomes were collected using differential ultracentrifugation. Cell proliferation, Jurkat T cell immune assay, and immunoblot analysis were used for downstream analysis. RESULTS: SR exosomes treatment displayed a cytotoxic effect on immune cells. This cytotoxic effect was associated with increased expression of PD-L1 on SR exosomes when compared to sunitinib-sensitive (SS) exosomes. Additionally, Tipi treatment downregulated PD-L1 expression on exosomes derived from SR cell lines. Tipi's ability to downregulate PD-L1 in exosomes has a significant application within patients. Exosomes collected from patients with RCC showed increased PD-L1 expression over subjects without RCC. Next, exosome concentrations were then compared after Tipi treatment, with all SS cell lines displaying an even greater reduction. On immunoblot assay, 293T cells showed a dose-dependent increase in Alix with no change in either nSMase or Rab27a. Conversely, all the SS and SR cell lines displayed a decrease in all three markers. After a cell proliferation employed a 48-h treatment on all SS and SR cell lines, the drug combination displayed synergistic ability to decrease tumor growth. CONCLUSIONS: Tipifarnib attenuates both the exosome endosomal sorting complex required for endosomal sorting complex required for transport (ESCRT)-dependent and ESCRT-independent pathways, thereby blocking exosome biogenesis and secretion as well as downregulating PD-L1 on SS and SR cells.

4.
Front Mol Biosci ; 8: 696537, 2021.
Article in English | MEDLINE | ID: mdl-34150854

ABSTRACT

Prostate cancer (PCa) is associated with advanced age, but how age contributes to prostate carcinogenesis remains unknown. The prostate-specific Pten conditional knockout mouse model closely imitates human PCa initiation and progression. To better understand how age impacts PCa in an experimental model, we have generated a spatially and temporally controlled Pten-null PCa murine model at different ages (aged vs. non-aged) of adult mice. Here, we present a protocol to inject the Cre-expressing adenovirus with luciferin tag, intraductally, into the prostate anterior lobes of Pten-floxed mice; Pten-loss will be triggered post-Cre expression at different ages. In vivo imaging of luciferin signal following viral infection confirmed successful delivery of the virus and Cre activity. Immunohistochemical staining confirmed prostate epithelial-specific expression of Cre recombinase and the loss of Pten and activation of P-Akt, P-S6, and P-4E-BP1. The Cre-expression, Pten ablation, and activated PI3K/AKT/mTOR pathways were limited to the prostate epithelium. All mice developed prostatic epithelial hyperplasia within 4 weeks after Pten ablation and prostatic intraepithelial neoplasia (PIN) within 8 weeks post-Pten ablation. Some PINs had progressed to invasive adenocarcinoma at 8-16 weeks post-Pten ablation. Aged mice exhibited significantly accelerated PI3K/AKT/mTOR signaling and increased PCa onset and progression compared to young mice. The viral infection success rate is ∼80%. This model will be beneficial for investigations of cancer-related to aging.

5.
Sci Rep ; 11(1): 10200, 2021 05 13.
Article in English | MEDLINE | ID: mdl-33986386

ABSTRACT

Renal Cell Carcinoma (RCC) is the most common form of kidney cancer, with clear cell RCC (ccRCC) representing about 85% of all RCC tumors. There are limited curable treatments available for metastatic ccRCC because this disease is unresponsive to conventional targeted systemic pharmacotherapy. Exosomes (Exo) are small extracellular vesicles (EVs) secreted from cancer cells with marked roles in tumoral signaling and pharmacological resistance. Ketoconazole (KTZ) is an FDA approved anti-fungal medication which has been shown to suppress exosome biogenesis and secretion, yet its role in ccRCC has not been identified. A time-course, dose-dependent analysis revealed that KTZ selectively decreased secreted Exo in tumoral cell lines. Augmented Exo secretion was further evident by decreased expression of Exo biogenesis (Alix and nSMase) and secretion (Rab27a) markers. Interestingly, KTZ-mediated inhibition of Exo biogenesis was coupled with inhibition of ERK1/2 activation. Next, selective inhibitors were employed and showed ERK signaling had a direct role in mediating KTZ's inhibition of exosomes. In sunitinib resistant 786-O cells lines, the addition of KTZ potentiates the efficacy of sunitinib by causing Exo inhibition, decreased tumor proliferation, and diminished clonogenic ability of RCC cells. Our findings suggest that KTZ should be explored as an adjunct to current RCC therapies.


Subject(s)
Carcinoma, Renal Cell/drug therapy , Exosomes/drug effects , Ketoconazole/therapeutic use , Adult , Carcinoma, Renal Cell/metabolism , Cell Line, Tumor , Drug Repositioning/methods , Drug Resistance, Neoplasm/drug effects , Drug Therapy, Combination/methods , Exosomes/metabolism , Female , Humans , Ketoconazole/pharmacology , Kidney Neoplasms/pathology , Male , Middle Aged , Primary Cell Culture , Signal Transduction/drug effects , Sunitinib/therapeutic use
6.
Mol Neurobiol ; 58(6): 2974-2989, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33586027

ABSTRACT

Damage to the cerebral vascular endothelium is a critical initiating event in the development of HIV-1-associated neurocognitive disorders. To study the role of mitochondria in cerebral endothelial dysfunction, we investigated how exosomes, isolated from both cell lines with integrated provirus and HIV-1 infected primary cells (HIV-exosomes), accelerate the dysfunction of primary human brain microvascular endothelial cells (HBMVECs) by inducing mitochondrial hyperfusion, and reducing the expression of phosphorylated endothelial nitric oxide synthase (p-eNOS). The quantitative analysis of the extracellular vesicles (EVs) indicates that the isolated EVs were predominantly exosomes. It was further supported by the detection of exosomal markers, and the absence of large EV-related protein in the isolated EVs. The exosomes were readily taken up by primary HBMVECs. HIV-exosomes induce cellular and mitochondrial superoxide production but reduce mitochondrial membrane potential in HBMVECs. HIV-exosomes increase mitochondrial hyperfusion, possibly due to loss of phosphorylated dynamin-related protein 1 (p-DRP1). HIV-exosomes, containing the HIV-Tat protein, and viral Tat protein reduce the expression of p-DRP1 and p-eNOS, and accelerate brain endothelial dysfunction. Finally, exosomes isolated from HIV-1 infected primary human peripheral blood mononuclear cells (hPBMCs) produce more exosomes than uninfected controls and reduce both p-DRP1 and p-eNOS expressions in primary HBMVECs. Our novel findings reveal the significant role of HIV-exosomes on dysregulation of mitochondrial function, which induces adverse changes in the function of the brain microvascular endothelium.


Subject(s)
Brain/metabolism , Dynamins/metabolism , Endothelium, Vascular/metabolism , Exosomes/metabolism , HIV-1/metabolism , Mitochondria/metabolism , Endocytosis , Exosomes/ultrastructure , Humans , Jurkat Cells , Membrane Potential, Mitochondrial , Models, Biological , Nitric Oxide Synthase Type III/metabolism , Phosphorylation , Superoxides/metabolism , Virus Replication , tat Gene Products, Human Immunodeficiency Virus/metabolism
7.
Andrology ; 8(6): 1824-1833, 2020 11.
Article in English | MEDLINE | ID: mdl-32672414

ABSTRACT

BACKGROUND: Testosterone (T) deficiency is associated with erectile dysfunction (ED). The relaxant response of T on the corporal smooth muscle through a non-genomic pathway has been reported; however, the in vitro modulating effects of T on human corpus cavernosum (HCC) have not been studied. OBJECTIVES: To compare the effects of various concentrations of T on nitric oxide (NO)-dependent and nitric oxide-independent relaxation in organ bath studies and elucidate its mode of action, specifically targeting the cavernous NO/cyclic guanosine monophosphate (cGMP) pathway. MATERIALS AND METHODS: Human corpus cavernosum (HCC) samples were obtained from men undergoing penile prosthesis implantation (n = 9). After phenylephrine (Phe) precontraction, the effects of various relaxant drugs of HCC strips were performed using organ bath at low (150 ng/dL), eugonadal (400 ng/dL), and hypergonadal (600 ng/dL) T concentrations. The penile tissue measurements of endothelial nitric oxide synthase (eNOS), neuronal (n)NOS, and phosphodiesterase type 5 (PDE5) were evaluated via immunostaining, Western blot, cGMP and nitrite/nitrate (NOx) assays. RESULTS: Relaxation responses to ACh and EFS in isolated HCC strips were significantly increased at all T levels compared with untreated tissues. The sildenafil-induced relaxant response was significantly increased at both eugonadal and hypergonadal T levels. Normal and high levels of T are accompanied by increased eNOS, nNOS, cGMP, and NOx levels, along with reduced PDE5 protein expression. CONCLUSION: This study reveals an important role of short-term and modulatory effects of different concentrations of T in HCC. T positively regulates functional activities, inhibition of PDE5 expression, and formation of cGMP and NOx in HCC. These results demonstrate that T indirectly contributes to HCC relaxation via downstream effects on nNOS, eNOS, and cGMP and by inhibiting PDE5. This action provides a rationale for normalizing T levels in hypogonadal men with ED, especially when PDE5 inhibitors are ineffective. T replacement therapy may improve erectile function by modulating endothelial function in hypogonadal men.


Subject(s)
Cyclic GMP/metabolism , Nitric Oxide/biosynthesis , Penis/metabolism , Testosterone/pharmacology , Cyclic Nucleotide Phosphodiesterases, Type 5/analysis , Erectile Dysfunction/blood , Hormone Replacement Therapy , Humans , Male , Middle Aged , Nitric Oxide/metabolism , Nitric Oxide Synthase Type I/analysis , Nitric Oxide Synthase Type III/analysis , Penile Induration/blood , Sildenafil Citrate/pharmacology , Testosterone/blood
8.
Prostate ; 80(10): 764-776, 2020 07.
Article in English | MEDLINE | ID: mdl-32356608

ABSTRACT

BACKGROUND: Aging is the most important risk factor for prostate cancer (PCa), but how age contributes to PCa is poorly understood. Aging is characterized by low-grade systemic inflammation (i.e., inflammaging) that is often attributed to the progressive activation of immune cells over time, which may play an important role in prostate carcinogenesis. Th17 response is elevated in aging humans and mice, but it remains unknown whether it is increased in prostate tissue or contributes to prostate carcinogenesis during aging. In this study, we aimed to determine the role of age-related Th17 response in PCa cell growth, migration, and invasion. METHODS: C57BL/6J (B6) mouse was used as an aging animal model and the prostate histopathology during aging was analyzed. Splenic CD4+ T cells were isolated from young (16-20 weeks old) and aged (96-104 weeks old) mice, and cultured in the presence of plate-bound anti-CD3/anti-CD28, with or without Th17 differentiation conditions. The cells were collected and used for subsequent flow cytometry or quantitative reverse transcription polymerase chain reaction. The supernatant was collected and used to treat PCa cell lines. The treated PCa cells were analyzed for cell viability, migration, invasion, and nuclear factor kappa B (NF-κB) signaling. RESULTS: Aged mice had enlarged prostate glands and increased morphological alterations, with not only increased inflammatory cell infiltration but also increased Th17 cytokines in prostate tissue, compared to young mice. Naïve CD4+ T cells from aged mice differentiated increased interleukin (IL)-17-expressing cells. CD4+ T cells from aged mice spleen had increased Th17 cells, Th17 cytokines and Th17/Treg ratio compared to young mice. Factors secreted from aged CD4+ T cells, especially from ex vivo differentiated Th17 cells, not only promoted PCa cell viability, migration, and invasion but also activated the NF-κB signaling in PCa cells compared to young mice. CONCLUSIONS: These results indicate that age-related CD4+ T cells, especially Th17 cells-secreted factors have the potential to contribute to prostate carcinogenesis. Our work could prompt further research using autochthonous PCa mouse models at different ages to elucidate the functional role of Th17 response in prostate carcinogenesis during aging.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , Prostatic Neoplasms/immunology , Th17 Cells/immunology , Aging/immunology , Animals , CD4-Positive T-Lymphocytes/pathology , Cell Differentiation/immunology , Cell Line, Tumor , Cell Movement/immunology , Humans , Inflammation/immunology , Inflammation/pathology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Models, Animal , NF-kappa B/immunology , Neoplasm Invasiveness , PC-3 Cells , Prostatic Neoplasms/pathology , Th17 Cells/pathology
9.
Antioxidants (Basel) ; 9(1)2020 Jan 12.
Article in English | MEDLINE | ID: mdl-31940946

ABSTRACT

Androgen receptor (AR) signaling is fundamental to prostate cancer (PC) progression, and hence, androgen deprivation therapy (ADT) remains a mainstay of treatment. However, augmented AR signaling via both full length AR (AR-FL) and constitutively active AR splice variants, especially AR-V7, is associated with the recurrence of castration resistant prostate cancer (CRPC). Oxidative stress also plays a crucial role in anti-androgen resistance and CRPC outgrowth. We examined whether a triterpenoid antioxidant drug, Bardoxolone-methyl, known as CDDO-Me or RTA 402, can decrease AR-FL and AR-V7 expression in PC cells. Nanomolar (nM) concentrations of CDDO-Me rapidly downregulated AR-FL in LNCaP and C4-2B cells, and both AR-FL and AR-V7 in CWR22Rv1 (22Rv1) cells. The AR-suppressive effect of CDDO-Me was evident at both the mRNA and protein levels. Mechanistically, acute exposure (2 h) to CDDO-Me increased and long-term exposure (24 h) decreased reactive oxygen species (ROS) levels in cells. This was concomitant with an increase in the anti-oxidant transcription factor, Nrf2. The anti-oxidant N-acetyl cysteine (NAC) could overcome this AR-suppressive effect of CDDO-Me. Co-exposure of PC cells to CDDO-Me enhanced the efficacy of a clinically approved anti-androgen, enzalutamide (ENZ), as evident by decreased cell-viability along with migration and colony forming ability of PC cells. Thus, CDDO-Me which is in several late-stage clinical trials, may be used as an adjunct to ADT in PC patients.

10.
Aging Male ; 23(5): 1088-1097, 2020 Dec.
Article in English | MEDLINE | ID: mdl-31741421

ABSTRACT

OBJECTIVE: To evaluate the effect of the If channel inhibitor, ivabradine on human corpus cavernosum (HCC) smooth muscle tone. METHODS: HCC samples were obtained from erectile dysfunction(ED) patients (n = 12) undergoing penile prosthesis surgery. Concentration-response curves for ivabradine were exposed to various inhibitory and stimulatory agents. The relaxant and contractile responses to electrical field stimulation (EFS, 10 Hz and 80 Hz) were examined in the presence or absence of ivabradine (10 µM). HCN3 and HCN4 channel expression and localization were determined by Western blot and immunohistochemical analyses of HCC tissues. RESULTS: Increasing ivabradine concentrations dependently reduced the maximal contractile responses of isolated HCC strips induced by KCl (59.5 ± 2.5%) and phenylephrine (84.0 ± 9.8%), which was not affected by nitric oxide synthase and soluble guanylyl cyclase inhibitors after phenylephrine-induced contraction. Nifedipine and tetraethylammonium inhibited the maximum relaxation to ivabradine by 75% and 39.3%, respectively. Fasudil and sildenafil increased the relaxation response to ivabradine without altering the maximum response. Pre-incubation with ivabradine significantly increased relaxant responses to EFS (p < 0.01) and reduced the contractile tension evoked by EFS (72.3%) (p < 0.001). Ivabradine incubation did not affect the expression and localization of HCN3 and HCN4 channels in the HCC smooth muscle cells. CONCLUSIONS: Ivabradine exhibits a relaxant effect on HCC tissues, which is likely to be attributed to the blocking of L-type Ca2+ channels and the opening of K+ channels, independent of changes in the activation of the nitric oxide/cyclic guanosine monophosphate system. Inhibition of HCN channels localized in cavernosal smooth muscle cells may offer pharmacological benefits for patients with cardiovascular risk factors.


Subject(s)
Erectile Dysfunction , Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels , Humans , Ivabradine/pharmacology , Male , Muscle Contraction , Nitric Oxide , Penile Erection , Penis
11.
Surgery ; 167(1): 73-79, 2020 01.
Article in English | MEDLINE | ID: mdl-31711617

ABSTRACT

BACKGROUND: Although well-differentiated papillary thyroid cancer may remain indolent, lymph node metastases and the recurrence rates are approximately 50% and 20%, respectively. No current biomarkers are able to predict metastatic lymphadenopathy and recurrence in early stage papillary thyroid cancer. Hence, identifying prognostic biomarkers predicting cervical lymph-node metastases would prove very helpful in determining treatment. METHODS: The database of the Cancer Genome Atlas included 495 papillary thyroid cancer samples. Using this database, we developed a machine learning model to define a gene signature that could predict lymph-node metastasis (N0 or N1). Kruskal-Wallis tests, univariate and multivariate logistic and Cox regression models, and Kaplan-Meier analyses were performed to correlate the gene signature with clinical outcomes. RESULTS: We identified a panel of 25 genes and constructed a risk score that can differentiate N0 and N1 papillary thyroid cancer samples (P < .001) with a sensitivity of 86%, a specificity of 62%, a positive predictive value of 93%, and a negative predictive value of 42%. This panel represents an independent biomarker to predict metastatic lymphadenopathy (OR = 8.06, P < .001) specifically in patients with T1 lesions (OR = 7.65, P = .002) and disease-free survival (HR = 2.64, P = .043). CONCLUSION: This novel 25-gene panel may be used as a potential prognostic marker for accurately predicting lymph-node metastasis and disease-free survival in patients with early-stage papillary thyroid cancer.


Subject(s)
Biomarkers, Tumor/genetics , Lymphatic Metastasis/diagnosis , Neoplasm Recurrence, Local/diagnosis , Thyroid Cancer, Papillary/diagnosis , Thyroid Neoplasms/genetics , Adult , Computational Biology , Disease-Free Survival , Feasibility Studies , Female , Humans , Lymphatic Metastasis/genetics , Lymphatic Metastasis/prevention & control , Machine Learning , Male , Middle Aged , Models, Biological , Neoplasm Recurrence, Local/genetics , Neoplasm Recurrence, Local/prevention & control , Neoplasm Staging , Patient Selection , Predictive Value of Tests , Prognosis , RNA-Seq , ROC Curve , Thyroid Cancer, Papillary/genetics , Thyroid Cancer, Papillary/mortality , Thyroid Cancer, Papillary/surgery , Thyroid Neoplasms/mortality , Thyroid Neoplasms/pathology
12.
J Sex Med ; 16(3): 383-393, 2019 03.
Article in English | MEDLINE | ID: mdl-30846112

ABSTRACT

BACKGROUND: Previous studies have documented improvement in erectile function after bilateral cavernous nerve injury (BCNI) in rats with the use of pioglitazone. Our group determined this improvement to be mediated by the insulin-like growth factor-1 (IGF-1) pathway. AIM: To eliminate the systemic effects of pioglitazone and evaluate the local delivery of IGF-1 by polymeric microspheres after BCNI in the rat. METHODS: Male Sprague-Dawley rats aged 10-12 weeks were assigned at random to 3 groups: sham operation with phosphate buffered saline (PBS)-loaded microspheres (sham group), crush injury with PBS-loaded microspheres (crush group), and crush injury with IGF-1-loaded microspheres (IGF-1 group). Poly(lactic-co-glycolic) acid microspheres were injected underneath the major pelvic ganglion (MPG). IGF-1 was released at approximately 30 ng/mL/day per MPG per rat. OUTCOMES: Functional results were demonstrated by maximal intracavernosal pressure (ICP) normalized to mean arterial pressure (MAP). Protein-level analysis data of IGF-1 receptor (IGF-1R), extracellular signal-regulated kinase (ERK)-1/2, and neuronal nitric oxide synthase (nNOS) were obtained using Western blot analysis and immunohistochemistry for both the cavernosal tissue and the MPG and cavernous nerve (CN). RESULTS: At 2 weeks after nerve injury, animals treated with IGF-1 demonstrated improved erectile functional recovery (ICP/MAP) at all voltages compared with BCNI (2.5V, P = .001; 5V, P < .001; 7.5V, P < .001). Western blot results revealed that up-regulation of the IGF-1R and ERK-1/2 in both the nervous and erectile tissue was associated with improved erectile function recovery. There were no significant between-group differences in nNOS protein levels in cavernosal tissue, but there was an up-regulation of nNOS in the MPG and CN. Immunohistochemistry confirmed these trends. CLINICAL TRANSLATION: Local up-regulation of the IGF-1R in the neurovascular bed at the time of nerve injury may help men preserve erectile function after pelvic surgery, such as radical prostatectomy, eliminating the need for systemic therapy. STRENGTHS & LIMITATIONS: This study demonstrates that local drug delivery to the MPG and CN can affect the CN tissue downstream, but did not investigate the potential effects of up-regulation of the growth factor receptors on prostate cancer tissue. CONCLUSION: Stimulating the IGF-1R at the level of the CN has the potential to mitigate erectile dysfunction in men after radical prostatectomy, but further research is needed to evaluate the safety of this growth factor in the setting of prostate cancer. Haney NM, Talwar S, Akula PK, et al. Insulin-Like Growth Factor-1-Loaded Polymeric Poly(Lactic-Co-Glycolic) Acid Microspheres Improved Erectile Function in a Rat Model of Bilateral Cavernous Nerve Injury. J Sex Med 2019;16:383-393.


Subject(s)
Erectile Dysfunction/drug therapy , Insulin-Like Growth Factor I/administration & dosage , Penile Erection/drug effects , Animals , Disease Models, Animal , Erectile Dysfunction/physiopathology , Hypogastric Plexus/metabolism , Insulin-Like Growth Factor I/metabolism , Male , Microspheres , Nitric Oxide Synthase Type I/metabolism , Penis/physiopathology , Polylactic Acid-Polyglycolic Acid Copolymer/chemistry , Rats , Rats, Sprague-Dawley , Recovery of Function , Trauma, Nervous System/drug therapy
13.
Int J Impot Res ; 31(1): 1-8, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30072768

ABSTRACT

To determine if the insulin-like growth factor-1 (IGF-1) pathway is involved in the improvement in erectile function recovery in rats after nerve crush injury treated with pioglitazone (Pio). Sprague-Dawley rats were divided into four groups. The first group received sham operation (n = 5). The second group underwent bilateral cavernous nerve injury (BCNI, n = 7). The third group received BCNI and Pio treatment (BCNI + Pio, n = 7), whereas the fourth group underwent BCNI with Pio treatment and IGF-1 inhibition (BCNI + Pio + JB-1, n = 7). The IGF-1 receptor (IGF-1R) was inhibited by JB-1, a small molecular antagonist of the receptor. After 14 days of treatment, erectile function was measured via intracorporal pressure normalized to mean arterial pressure (ICP/MAP) and the major pelvic ganglion and cavernous nerve harvested for western blot and immunohistochemistry (IHC) of phosphorylated-IGF-1Rß (p-IGF-1Rß), phosphorylated-ERK1/2 (p-ERK1/2), and neuronal NOS (nNOS). BCNI + Pio animals exhibited improvements in ICP/MAP, similar to Sham animals, and BCNI + Pio + JB-1 rats demonstrated a reduced ICP/MAP similar to BCNI-only rats at all measured voltages. Western blot results showed upregulation of p-IGF-1Rß was observed in the BCNI + Pio group. Low levels of p-ERK1/2 were seen in the JB-1-treated animals. The immunoblot results were supported by IHC findings. Intense IHC staining of nNOS was detected in the BCNI + Pio group. The group treated with JB-1 showed minimal protein expression of p-ERK1/2, nNOS, and p-IGF-1Rß. Pio improves erectile function in rats undergoing BCNI via an IGF-1-mediated pathway.


Subject(s)
Erectile Dysfunction/drug therapy , Penile Erection/drug effects , Peripheral Nerve Injuries/complications , Pioglitazone/pharmacology , Receptor, IGF Type 1/antagonists & inhibitors , Animals , Erectile Dysfunction/etiology , Male , Nerve Crush , Nitric Oxide Synthase Type I/metabolism , Phosphorylation/drug effects , Pioglitazone/therapeutic use , Rats , Rats, Sprague-Dawley , Receptor, IGF Type 1/metabolism , Signal Transduction/drug effects , Up-Regulation/drug effects
14.
Sci Rep ; 8(1): 14702, 2018 10 02.
Article in English | MEDLINE | ID: mdl-30279437

ABSTRACT

Persistence of latent HIV-1 in macrophages (MACs) and T-helper lymphocytes (THLs) remain a major therapeutic challenge. Currently available latency reversing agents (LRAs) are not very effective in vivo. Therefore, understanding of physiologic mechanisms that dictate HIV-1 latency/reactivation in reservoirs is clearly needed. Mesenchymal stromal/stem cells (MSCs) regulate the function of immune cells; however, their role in regulating virus production from latently-infected MACs & THLs is not known. We documented that exposure to MSCs or their conditioned media (MSC-CM) rapidly increased HIV-1 p24 production from the latently-infected U1 (MAC) & ACH2 (THL) cell lines. Exposure to MSCs also increased HIV-1 long terminal repeat (LTR) directed gene expression in the MAC and THL reporter lines, U937-VRX and J-Lat (9.2), respectively. MSCs exposed to CM from U1 cells (U1-CM) showed enhanced migratory ability towards latently-infected cells and retained their latency-reactivation potential. Molecular studies showed that MSC-mediated latency-reactivation was dependent upon both the phosphatidyl inositol-3-kinase (PI3K) and nuclear factor-κB (NFκB) signaling pathways. The pre-clinically tested inhibitors of PI3K (PX-866) and NFκB (CDDO-Me) suppressed MSC-mediated HIV-1 reactivation. Furthermore, coexposure to MSC-CM enhanced the latency-reactivation efficacy of the approved LRAs, vorinostat and panobinostat. Our findings on MSC-mediated latency-reactivation may provide novel strategies against persistent HIV-1 reservoirs.


Subject(s)
Anti-HIV Agents/pharmacology , HIV-1/physiology , Mesenchymal Stem Cells/metabolism , Virus Activation/drug effects , Anti-HIV Agents/therapeutic use , Cell Line , Culture Media, Conditioned/pharmacology , Drug Evaluation, Preclinical , Gene Expression Regulation, Viral/drug effects , Gonanes/pharmacology , HIV Infections/virology , HIV Long Terminal Repeat/drug effects , HIV-1/drug effects , Humans , Mesenchymal Stem Cells/drug effects , NF-kappa B/metabolism , Oleanolic Acid/analogs & derivatives , Oleanolic Acid/pharmacology , Panobinostat/pharmacology , Panobinostat/therapeutic use , Phosphatidylinositol 3-Kinases/metabolism , Signal Transduction/drug effects , Virus Latency/drug effects , Vorinostat/pharmacology , Vorinostat/therapeutic use
15.
Expert Opin Biol Ther ; 18(11): 1137-1150, 2018 11.
Article in English | MEDLINE | ID: mdl-30301368

ABSTRACT

INTRODUCTION: Stem cell (SC) application is a promising area of research in regenerative medicine, with the potential to treat, prevent, and cure disease. In recent years, the number of studies focusing on SCs for the treatment of erectile dysfunction (ED) and other sexual dysfunctions has increased significantly. AREAS COVERED: This review includes critical ED targets and preclinical studies, including the use of SCs and animal models in diabetes, aging, cavernous nerve injury, and Peyronie's disease. A literature search was performed on PubMed for English articles. EXPERT OPINION: Combination treatment offers better results than monotherapy to improve pathological changes in diabetic ED. Regenerative medicine is a promising approach for the maintenance of sexual health and erectile function later in life. Cavernous nerve regeneration and vascular recovery employing SC treatment may be focused on radical prostatectomy-induced ED. Notwithstanding, there are a number of hurdles to overcome before SC-based therapies for ED are considered in clinical settings. Paracrine action, not cellular differentiation, appears to be the principal mechanism of action underlying SC treatment of ED. Intracavernosal injection of a single SC type should be the choice protocol for future clinical trials.


Subject(s)
Erectile Dysfunction/therapy , Stem Cell Transplantation/methods , Stem Cell Transplantation/trends , Animals , Diabetes Complications/pathology , Diabetes Complications/therapy , Diabetes Mellitus/pathology , Diabetes Mellitus/therapy , Disease Models, Animal , Erectile Dysfunction/etiology , Erectile Dysfunction/pathology , Humans , Male , Penile Induration/complications , Penile Induration/pathology , Penile Induration/therapy , Prostatectomy , Regenerative Medicine/methods , Regenerative Medicine/trends , Sexual Dysfunction, Physiological/etiology , Sexual Dysfunction, Physiological/therapy
16.
Curr Gene Ther ; 18(4): 225-239, 2018.
Article in English | MEDLINE | ID: mdl-30058487

ABSTRACT

Erectile Dysfunction (ED) is a common health condition occuring in roughly 50% of aging males (40-70 years old). Recent attention has related gene therapy to ED, and now there is an interest to further implement gene therapy concepts to ED treatment. This review is an attempt to analyze key challenges and emphasize primary areas, including mostly preclinical and a few clinical trials, cellular target(s), and different viral vectors/nanoparticles for gene delivery in ED. While overexpression of target genes can be silenced by RNA interference (RNAi), down-regulation of these mechanisms has been implicated in ED. Although many patients with ED demonstrate efficacy with phosphodiesterase type 5 inhibitors, this therapy is insufficient in approximately 30-40% of patients. Although several preclinical studies for ED treatment provided promising results, gene therapy has not shown success in clinical practice, due in part to technical limitations of gene therapy to address ED pathogenesis. Developments in small RNA, such as small interfering RNA (siRNA) may lead to significant benefit in the management of ED. Also, siRNA delivery into the corpus cavernosum seems a challenging issue and awaits further development. Several safety concerns of gene therapy, gene acquisition, preparation, and delivery are necessary to continue investigation before any widespread application is used in ED treatment.


Subject(s)
Erectile Dysfunction/genetics , Erectile Dysfunction/therapy , Genetic Therapy/methods , Genetic Vectors/administration & dosage , Humans , Male
17.
Exp Biol Med (Maywood) ; 243(10): 817-825, 2018 06.
Article in English | MEDLINE | ID: mdl-29932371

ABSTRACT

MicroRNAs (miRNAs) are a small functional non-coding RNAs that post-transcriptionally regulate gene expression through mRNA degradation or translational repression. miRNAs are key regulatory components of various cellular networks. Current evidence support that multiple mammalian genome-encoded miRNAs impact the cellular biology, including proliferation, apoptosis, differentiation, and tumorigenesis, by targeting specific subsets of mRNAs. This minireview is focused on the current themes underlying the interactions between miRNAs and their mRNA targets and pathways in prostate tumorigenesis and progression, and their potential clinical utility as biomarkers for prostate cancer. Impact statement The primary goal of this article was to review recent literature on miRNA biogenesis and further elaborate on the identity of newly discovered miRNAs and their potential functional significance in the complex biological network associated with prostate tumorigenesis and disease progression and as biomarkers for prostate cancer.


Subject(s)
Biomarkers, Tumor/analysis , MicroRNAs/analysis , Prostatic Neoplasms/pathology , Humans , Male , Prostatic Neoplasms/diagnosis
18.
Sci Rep ; 8(1): 8161, 2018 05 25.
Article in English | MEDLINE | ID: mdl-29802284

ABSTRACT

Targeting exosome biogenesis and release may have potential clinical implications for cancer therapy. Herein, we have optimized a quantitative high throughput screen (qHTS) assay to identify compounds that modulate exosome biogenesis and/or release by aggressive prostate cancer (PCa) CD63-GFP-expressing C4-2B cells. A total of 4,580 compounds were screened from the LOPAC library (a collection of 1,280 pharmacologically active compounds) and the NPC library (NCGC collection of 3,300 compounds approved for clinical use). Twenty-two compounds were found to be either potent activators or inhibitors of intracellular GFP signal in the CD63-GFP-expressing C4-2B cells. The activity of lead compounds in modulating the secretion of exosomes was validated by a tunable resistive pulse sensing (TRPS) system (qNano-IZON) and flow cytometry. The mechanism of action of the lead compounds in modulating exosome biogenesis and/or secretion were delineated by immunoblot analysis of protein markers of the endosomal sorting complex required for transport (ESCRT)-dependent and ESCRT-independent pathways. The lead compounds tipifarnib, neticonazole, climbazole, ketoconazole, and triademenol were validated as potent inhibitors and sitafloxacin, forskolin, SB218795, fenoterol, nitrefazole and pentetrazol as activators of exosome biogenesis and/or secretion in PC cells. Our findings implicate the potential utility of drug-repurposing as novel adjunct therapeutic strategies in advanced cancer.


Subject(s)
Drug Repositioning , Drug Screening Assays, Antitumor , Exosomes/drug effects , Exosomes/metabolism , High-Throughput Screening Assays , Neoplasms/drug therapy , Neoplasms/pathology , Cell Line, Tumor , Humans
19.
Sex Med Rev ; 6(2): 234-241, 2018 04.
Article in English | MEDLINE | ID: mdl-28827037

ABSTRACT

INTRODUCTION: It is common for men to develop erectile dysfunction after radical prostatectomy. The anatomy of the rat allows the cavernous nerve (CN) to be identified, dissected, and injured in a controlled fashion. Therefore, bilateral CN injury (BCNI) in the rat model is routinely used to study post-prostatectomy erectile dysfunction. AIM: To compare and contrast the available literature on pharmacologic intervention after BCNI in the rat. METHODS: A literature search was performed on PubMed for cavernous nerve and injury and erectile dysfunction and rat. Only articles with BCNI and pharmacologic intervention that could be grouped into categories of immune modulation, growth factor therapy, receptor kinase inhibition, phosphodiesterase type 5 inhibition, and anti-inflammatory and antifibrotic interventions were included. MAIN OUTCOME MEASURES: To assess outcomes of pharmaceutical intervention on erectile function recovery after BCNI in the rat model. The ratio of maximum intracavernous pressure to mean arterial pressure was the main outcome measure chosen for this analysis. RESULTS: All interventions improved erectile function recovery after BCNI based on the ratio of maximum intracavernous pressure to mean arterial pressure results. Additional end-point analysis examined the corpus cavernosa and/or the major pelvic ganglion and CN. There was extreme heterogeneity within the literature, making accurate comparisons between crush injury and therapeutic interventions difficult. CONCLUSIONS: BCNI in the rat is the accepted animal model used to study nerve-sparing post-prostatectomy erectile dysfunction. However, an important limitation is extreme variability. Efforts should be made to decrease this variability and increase the translational utility toward clinical trials in humans. Haney NM, Nguyen HMT, Honda M, et al. Bilateral Cavernous Nerve Crush Injury in the Rat Model: A Comparative Review of Pharmacologic Interventions. Sex Med Rev 2018;6:234-241.


Subject(s)
Disease Models, Animal , Erectile Dysfunction , Peripheral Nerve Injuries , Prostatectomy/adverse effects , Animals , Erectile Dysfunction/drug therapy , Erectile Dysfunction/etiology , Male , Peripheral Nerve Injuries/drug therapy , Peripheral Nerve Injuries/etiology , Rats , Urological Agents/therapeutic use
20.
Biochem Biophys Res Commun ; 495(1): 1240-1248, 2018 01 01.
Article in English | MEDLINE | ID: mdl-29170133

ABSTRACT

The mitochondrial Bit1 protein exerts tumor-suppressive function in NSCLC through induction of anoikis and inhibition of EMT. Having this dual tumor suppressive effect, its downregulation in the established human lung adenocarcinoma A549 cell line resulted in potentiation of tumorigenicity and metastasis in vivo. However, the exact role of Bit1 in regulating malignant growth and transformation of human lung epithelial cells, which are origin of most forms of human lung cancers, has not been examined. To this end, we have downregulated the endogenous Bit1 expression in the immortalized non-tumorigenic human bronchial epithelial BEAS-2B cells. Knockdown of Bit1 enhanced the growth and anoikis insensitivity of BEAS-2B cells. In line with their acquired anoikis resistance, the Bit1 knockdown BEAS-2B cells exhibited enhanced anchorage-independent growth in vitro but failed to form tumors in vivo. The loss of Bit1-induced transformed phenotypes was in part attributable to the repression of E-cadherin expression since forced exogenous E-cadherin expression attenuated the malignant phenotypes of the Bit1 knockdown cells. Importantly, we show that the loss of Bit1 expression in BEAS-2B cells resulted in increased Erk activation, which functions upstream to promote TLE1-mediated transcriptional repression of E-cadherin. These collective findings indicate that loss of Bit1 expression contributes to the acquisition of malignant phenotype of human lung epithelial cells via Erk activation-induced suppression of E-cadherin expression.


Subject(s)
Alveolar Epithelial Cells/drug effects , Alveolar Epithelial Cells/physiology , Anoikis/physiology , Cadherins/metabolism , Carboxylic Ester Hydrolases/metabolism , Cell Transformation, Neoplastic/metabolism , Extracellular Signal-Regulated MAP Kinases/metabolism , Mitochondrial Proteins/metabolism , Alveolar Epithelial Cells/cytology , Antigens, CD , Cell Differentiation/physiology , Cell Line , Cell Proliferation/physiology , Cell Transformation, Neoplastic/pathology , Down-Regulation/physiology , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...