Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Hum Factors ; 64(2): 385-400, 2022 03.
Article in English | MEDLINE | ID: mdl-32757794

ABSTRACT

OBJECTIVE: The purpose of this study was to evaluate localized muscle fatigue responses at three upper-extremity ergonomics threshold limit value (TLV) duty cycles. BACKGROUND: Recently, a TLV equation was published to help mitigate excessive development of localized muscle fatigue in repetitive upper limb tasks. This equation predicts acceptable levels of maximal voluntary contraction (% MVC) for a given duty cycle (DC). Experimental validation of this TLV curve has not yet been reported, which can help guide utilization by practitioners. METHOD: Eighteen participants performed intermittent isometric elbow flexion efforts, in three separate counter-balanced sessions, at workloads defined by the American Conference of Governmental Industrial Hygenists' (ACGIH) TLV equation: low DC (20% DC, 29.6% MVC), medium DC (40% DC, 19.7% MVC), and high DC (60% DC, 13.9% MVC). Targeted localized muscle fatigue (LMF) of the biceps brachii was tracked across numerous response variables, including decline in strength (MVC), electromyography (EMG) amplitude and mean power frequency (MnPF), and several psychophysical ratings. RESULTS: At task completion, biceps MnPF and MVC (strength) were significantly different between each TLV workload, with the high DC condition eliciting the largest declines in MnPF and MVC. CONCLUSION: Findings demonstrate that working at different DCs along the ACGIH TLV curve may not be equivalent in preventing excessive LMF. Higher DC workloads elicited a greater LMF response across several response variables. APPLICATION: High DC work of the upper extremity should be avoided to mitigate excess LMF development. Current TLVs for repetitive upper-extremity work may overestimate acceptable relative contraction thresholds, particularly at higher duty cycles.


Subject(s)
Muscle Fatigue , Upper Extremity , Electromyography , Ergonomics , Humans , Muscle Contraction/physiology , Muscle Fatigue/physiology , Muscle, Skeletal/physiology , Threshold Limit Values , Upper Extremity/physiology
2.
J Neurophysiol ; 122(1): 413-423, 2019 07 01.
Article in English | MEDLINE | ID: mdl-31116661

ABSTRACT

Forearm rotation (supination/pronation) alters corticospinal excitability to the biceps brachii, but it is unclear whether corticospinal excitability is influenced by joint angle, muscle length, or both. Thus the purpose of this study was to separately examine elbow joint angle and muscle length on corticospinal excitability. Corticospinal excitability to the biceps and triceps brachii was measured using motor evoked potentials (MEPs) elicited via transcranial magnetic stimulation. Spinal excitability was measured using cervicomedullary motor evoked potentials (CMEPs) elicited via transmastoid electrical stimulation. Elbow angles were manipulated with a fixed biceps brachii muscle length (and vice versa) across five unique postures: 1) forearm neutral, elbow flexion 90°; 2) forearm supinated, elbow flexion 90°; 3) forearm pronated, elbow flexion 90°; 4) forearm supinated, elbow flexion 78°; and 5) forearm pronated, elbow flexion 113°. A musculoskeletal model determined biceps brachii muscle length for postures 1-3, and elbow joint angles (postures 4-5) were selected to maintain biceps length across forearm orientations. MEPs and CMEPs were elicited at rest and during an isometric contraction of 10% of maximal biceps muscle activity. At rest, MEP amplitudes to the biceps were largest during supination, which was independent of elbow joint angle. CMEP amplitudes were not different when the elbow was fixed at 90° but were largest in pronation when muscle length was controlled. During an isometric contraction, there were no significant differences across forearm postures for either MEP or CMEP amplitudes. These results highlight that elbow joint angle and biceps brachii muscle length can each independently influence spinal excitability. NEW & NOTEWORTHY Changes in upper limb posture can influence the responsiveness of the central nervous system to artificial stimulations. We established a novel approach integrating neurophysiology techniques with biomechanical modeling. Through this approach, the effects of elbow joint angle and biceps brachii muscle length on corticospinal and spinal excitability were assessed. We demonstrate that spinal excitability is uniquely influenced by joint angle and muscle length, and this highlights the importance of accounting for muscle length in neurophysiological studies.


Subject(s)
Evoked Potentials, Motor , Forearm/physiology , Joints/physiology , Muscle, Skeletal/physiology , Posture , Pyramidal Tracts/physiology , Adult , Biomechanical Phenomena , Humans , Isometric Contraction , Male , Muscle, Skeletal/anatomy & histology
SELECTION OF CITATIONS
SEARCH DETAIL
...