Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Toxicol Res (Camb) ; 11(1): 108-121, 2022 Feb.
Article in English | MEDLINE | ID: mdl-35237416

ABSTRACT

Di-(2-ethylhexyl) phthalate (DEHP) is one of the ubiquitous pollutants worldwide. This study aimed to clarify the potential thyroid disrupting effect of DEHP and explore the probable ameliorative effects of selenium nanoparticles (Se-NPs) and curcumin nanoparticles (CUR-NPs). Forty-two male albino rats were divided into seven groups (n = 6): Group I (negative control); group (II) orally received DEHP (500 mg/kg BW, dissolved in corn oil); Group (III) orally received Se-NPs (.2 mg/kg BW) in combination with DEHP; Group (IV) orally received CUR-NPs (15 mg/kg BW) alongside with DEHP; Group V (corn oil); Group VI (Se-NPs) and Group VII (CUR-NPs). The duration of the experiment was 30 days. DEHP administration significantly decreased serum free T4 and significantly increased serum free T3 as compared to control group, whereas thyroid-stimulating hormone showed no significant change. DEHP disrupted redox status leading to accumulation of malondialdehyde and depletion of reduced glutathione. Histologically, the effect of DEHP on thyroid follicles was confirmed by light and electron microscopic examination and morphometric analysis. Se-NPs slightly improved thyroid parameters as well as redox status. CUR-NPS reinstated the values of all studied thyroid parameters to nearly control levels. This research provides Se-NPs and CUR-NPs as novel protective agents against DEHP-thyroid disrupting effects.

2.
Tissue Eng Regen Med ; 18(1): 127-141, 2021 02.
Article in English | MEDLINE | ID: mdl-33090319

ABSTRACT

BACKGROUND: Lung fibrosis is considered as an end stage for many lung diseases including lung inflammatory disease, autoimmune diseases and malignancy. There are limited therapeutic options with bad prognostic outcome. The aim of this study was to explore the effect of mesenchymal stem cells (MSCs) derived from bone marrow on Bleomycin (BLM) induced lung fibrosis in albino rats. METHODS: 30 adult female albino rats were distributed randomly into 4 groups; negative control group, Bleomycin induced lung fibrosis group, lung fibrosis treated with bone marrow-MSCs (BM-MSCs) and lung fibrosis treated with cell free media. Lung fibrosis was induced with a single dose of intratracheal instillation of BLM. BM-MSCs or cell free media were injected intravenously 28 days after induction and rats were sacrificed after another 28 days for assessment. Minute respiratory volume (MRV), forced vital capacity (FVC) and forced expiratory volume 1 (FEV1) were recorded using spirometer (Power lab data acquisition system). Histological assessment was performed by light microscopic examination of H&E, and Masson's trichrome stained sections and was further supported by morphometric studies. In addition, electron microscopic examination to assess ultra-structural changes was done. Confocal Laser microscopy and PCR were used as tools to ensure MSCs homing in the lung. RESULTS: Induction of lung fibrosis was confirmed by histological examination, which revealed disorganized lung architecture, thickened inter-alveolar septa due excessive collagen deposition together with inflammatory cellular infiltration. Moreover, pneumocytes depicted variable degenerative changes. Reduction in MRV, FVC and FEV1 were recorded. BM-MSCs treatment showed marked structural improvement with minimal cellular infiltration and collagen deposition and hence restored lung architecture, together with lung functions. CONCLUSION: MSCs are promising potential therapy for lung fibrosis that could restore the normal structure and function of BLM induced lung fibrosis.


Subject(s)
Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells , Pulmonary Fibrosis , Animals , Bleomycin/toxicity , Bone Marrow , Female , Pulmonary Fibrosis/chemically induced , Rats
SELECTION OF CITATIONS
SEARCH DETAIL
...