Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Pharm Dev Technol ; 22(7): 928-938, 2017 Nov.
Article in English | MEDLINE | ID: mdl-27469993

ABSTRACT

CONTEXT: Multiple response optimization is an efficient technique to develop sustained release formulation while decreasing the number of experiments based on trial and error approach. OBJECTIVE: Diclofenac matrix tablets were optimized to achieve a release profile conforming to USP monograph, matching Voltaren®SR and withstand formulation variables. The percent of drug released at predetermined multiple time points were the response variables in the design. Statistical models were obtained with relative contour diagrams being overlaid to predict process and formulation parameters expected to produce the target release profile. MATERIALS AND METHODS: Tablets were prepared by wet granulation using mixture of equivalent quantities of Eudragit RL/RS at overall polymer concentration of 10-30%w/w and compressed at 5-15KN. RESULTS AND DISCUSSION: Drug release from the optimized formulation E4 (15%w/w, 15KN) was similar to Voltaren, conformed to USP monograph and found to be stable. Substituting lactose with mannitol, reversing the ratio between lactose and microcrystalline cellulose or increasing drug load showed no significant difference in drug release. Using dextromethorphan hydrobromide as a model soluble drug showed burst release due to higher solubility and formation of micro cavities. CONCLUSION: A numerical optimization technique was employed to develop a stable consistent promising formulation for sustained delivery of diclofenac.


Subject(s)
Diclofenac , Drug Compounding , Polymers , Chemistry, Pharmaceutical , Delayed-Action Preparations , Tablets
2.
Acta Pol Pharm ; 73(2): 439-52, 2016.
Article in English | MEDLINE | ID: mdl-27180437

ABSTRACT

Hydrophilic matrices, especially HPMC based, are widely used to provide sustained delivery where drug release occurs mainly by diffusion. A 3(2) full factorial design was used to develop and evaluate HPMC matrix tablet for sustained delivery of diclofenac. The influences of polymer concentration/viscosity, diluent type/ratio, drug load/solubility, compression force and pH change on drug release were investigated. Ten tablet formulations were prepared using wet granulation. HPMC K15M (10-30% w/w) was used as the polymer forming matrix. The release kinetics, compatibility studies, lot reproducibility and effect on storage were discussed. Increasing polymer concentration and compression force showed antagonistic effect on release rate. Mannitol tends to increase release rate more than lactose. Reversing diluent ratio between lactose and MCC did not affect drug release. Changing pH resulted in burst release whereas drug solubility is pH independent. F1 showed similar release to Voltaren SR and followed Higuchi model. Drug and polymer were compatible to each other. The formulation is stable at long and intermediate conditions with a significant increase in release rate at accelerated conditions due to water uptake and polymer swelling. The developed formulation was successful for a sustained delivery of diclofenac.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal/chemistry , Diclofenac/chemistry , Drug Carriers , Hypromellose Derivatives/chemistry , Calorimetry, Differential Scanning , Chemistry, Pharmaceutical , Crystallography, X-Ray , Delayed-Action Preparations , Drug Stability , Hydrogen-Ion Concentration , Kinetics , Models, Chemical , Solubility , Spectroscopy, Fourier Transform Infrared , Tablets , Technology, Pharmaceutical/methods , Viscosity
3.
J Toxicol Environ Health A ; 71(21): 1415-29, 2008.
Article in English | MEDLINE | ID: mdl-18800291

ABSTRACT

Splenda is comprised of the high-potency artificial sweetener sucralose (1.1%) and the fillers maltodextrin and glucose. Splenda was administered by oral gavage at 100, 300, 500, or 1000 mg/kg to male Sprague-Dawley rats for 12-wk, during which fecal samples were collected weekly for bacterial analysis and measurement of fecal pH. After 12-wk, half of the animals from each treatment group were sacrificed to determine the intestinal expression of the membrane efflux transporter P-glycoprotein (P-gp) and the cytochrome P-450 (CYP) metabolism system by Western blot. The remaining animals were allowed to recover for an additional 12-wk, and further assessments of fecal microflora, fecal pH, and expression of P-gp and CYP were determined. At the end of the 12-wk treatment period, the numbers of total anaerobes, bifidobacteria, lactobacilli, Bacteroides, clostridia, and total aerobic bacteria were significantly decreased; however, there was no significant treatment effect on enterobacteria. Splenda also increased fecal pH and enhanced the expression of P-gp by 2.43-fold, CYP3A4 by 2.51-fold, and CYP2D1 by 3.49-fold. Following the 12-wk recovery period, only the total anaerobes and bifidobacteria remained significantly depressed, whereas pH values, P-gp, and CYP3A4 and CYP2D1 remained elevated. These changes occurred at Splenda dosages that contained sucralose at 1.1-11 mg/kg (the US FDA Acceptable Daily Intake for sucralose is 5 mg/kg). Evidence indicates that a 12-wk administration of Splenda exerted numerous adverse effects, including (1) reduction in beneficial fecal microflora, (2) increased fecal pH, and (3) enhanced expression levels of P-gp, CYP3A4, and CYP2D1, which are known to limit the bioavailability of orally administered drugs.


Subject(s)
ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism , Cytochrome P-450 Enzyme System/metabolism , Feces/microbiology , Intestines/drug effects , Sucrose/analogs & derivatives , Sweetening Agents/pharmacology , Animals , Intestinal Mucosa/metabolism , Intestines/enzymology , Male , Rats , Rats, Sprague-Dawley , Sucrose/pharmacology
4.
J Toxicol Environ Health A ; 71(2): 119-30, 2008.
Article in English | MEDLINE | ID: mdl-18080902

ABSTRACT

Imidacloprid, a neonicotinoid, is one of the fastest growing insecticides in use worldwide because of its selectivity for insects. The potential for neurotoxicity following in utero exposure to imidacloprid is not known. Timed pregnant Sprague-Dawley rats (300-350 g) on d 9 of gestation were treated with a single intraperitoneal injection (i.p.) of imidacloprid (337 mg/kg, 0.75 x LD50, in corn oil). Control rats were treated with corn oil. On postnatal day (PND) 30, all male and female offspring were evaluated for (a) acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) activity, (b) ligand binding for nicotinic acetylcholine receptors (nAChR) and muscarinic acetylcholine receptors (m2 mAChR), (c) sensorimotor performance (inclined plane, beam-walking, and forepaw grip), and (d) pathological alterations in the brain (using cresyl violet and glial fibrillary acidic protein [GFAP] immunostaining). The offspring of treated mothers exhibited significant sensorimotor impairments at PND 30 during behavioral assessments. These changes were associated with increased AChE activity in the midbrain, cortex and brainstem (125-145% increase) and in plasma (125% increase). Ligand binding densities for [3H]cytosine for alpha4beta2 type nAchR did not show any significant change, whereas [3H]AFDX 384, a ligand for m2mAChR, was significantly increased in the cortex of offspring (120-155% increase) of imidacloprid-treated mothers. Histopathological evaluation using cresyl violet staining did not show any alteration in surviving neurons in various brain regions. On the other hand, there was a rise in GFAP immunostaining in motor cortex layer III, CA1, CA3, and the dentate gyrus subfield of the hippocampus of offspring of imidacloprid-treated mothers. The results indicate that gestational exposure to a single large, nonlethal, dose of imidacloprid produces significant neurobehavioral deficits and an increased expression of GFAP in several brain regions of the offspring on PND 30, corresponding to a human early adolescent age. These changes may have long-term adverse health effects in the offspring.


Subject(s)
Behavior, Animal/drug effects , Brain/drug effects , Glial Fibrillary Acidic Protein/metabolism , Imidazoles/toxicity , Insecticides/toxicity , Nitro Compounds/toxicity , Psychomotor Performance/drug effects , Acetylcholinesterase/metabolism , Animals , Brain/metabolism , Butyrylcholinesterase/blood , Female , Male , Maternal-Fetal Exchange , Neonicotinoids , Pregnancy , Rats , Rats, Sprague-Dawley , Receptors, Muscarinic/metabolism , Receptors, Nicotinic/metabolism
5.
J Toxicol Environ Health A ; 66(1): 57-73, 2003 Jan 10.
Article in English | MEDLINE | ID: mdl-12587291

ABSTRACT

This study reports and characterizes the testicular apoptosis following daily exposure of male Sprague-Dawley rats to subchronic combined doses of pyridostigmine bromide (PB, 1.3 mg/kg/d in water, oral), a drug used for treatment of myasthenia gravis and prophylactic treatment against nerve agents during the Persian Gulf War; the insect repellent N,N-diethyl m-toluamide (DEET, 40 mg/kg/d in ethanol, dermal); and the insecticide permethrin (0.13 mg/kg in ethanol, dermal), with and without stress for 28 d. Combined exposure to these chemicals was implicated in the development of illnesses including genitourinary disorders among many veterans of the Persian Gulf War. Previous studies from this laboratory have shown that exposure to combination of these chemicals produced greater toxicity compared to single components. Exposure to stress alone did not cause any significant histopathological alterations in the testes. Administration of combination of these chemicals induced apoptosis in rat testicular germ cells, Sertoli cells, and Leydig cells, as well as in the endothelial lining of the blood vessels. Testicular damage was significantly augmented when the animals were further exposed to a combination of chemicals and stress. Histopathological examination of testicular tissue sections showed that apoptosis was confined to the basal germ cells and spermatocytes, indicating suppression of spermatogenesis. Increased apoptosis of testicular cells coincided, in timing and localization, with increased expression of the apoptosis-promoting proteins Bax and p53. Furthermore, significant increase of 3-nitrotyrosine immunostaining in the testis revealed oxidative and/or nitrosation induction of cell death. In conclusion, combined exposure to real-life doses of test compounds caused germ-cell apoptosis that was significantly enhanced by stress.


Subject(s)
Cholinesterase Inhibitors/toxicity , DEET/toxicity , Germ Cells/drug effects , Insect Repellents/toxicity , Insecticides/toxicity , Pyrethrins/toxicity , Pyridostigmine Bromide/toxicity , Testis/drug effects , Administration, Oral , Administration, Topical , Analysis of Variance , Animals , Apoptosis , DNA Damage , Drug Synergism , Germ Cells/pathology , Immunoenzyme Techniques , Male , Rats , Rats, Sprague-Dawley , Stress, Physiological , Testis/pathology
6.
Arch Toxicol ; 76(8): 452-9, 2002 Aug.
Article in English | MEDLINE | ID: mdl-12185413

ABSTRACT

The pharmacokinetics and placental transfer of a single intravenous dose of 5.0 mg/kg (10 micro Ci/kg) ring-labeled [(14)C]chlorpyrifos were investigated in pregnant Sprague-Dawley rats at 11-13 days of gestation. Three rats were killed at 5, 15 or 30 min, or 1, 2, 4, 8, 12, 18, 24, 36, 48, 72 or 96 h after dosing. Radioactivity and 3,5,6-trichloropyridinol (TCP) were detected in all tissues 5 min after dosing. Chlorpyrifos was only found in maternal plasma and liver. Peak maternal plasma concentration of radioactivity ( micro g chlorpyrifos equivalents/ml) was 157 at 5 min, compared with 1.9 for fetal plasma at 15 min. The maximum concentrations of radioactivity ( micro g chlorpyrifos equivalents/g), detected in most tissues within 12 h of dosing, were, in descending order: liver (30), brain (29), placenta (21), and fetus (2). All peaks occurred at 5 min except for fetus and fetal plasma, which were at 15 min. TCP was detected by HPLC as the major compound identified in plasma and tissues. The maximum concentration detected was in plasma, at 12.4 micro g/ml, and for the following tissues was: liver 4.3 ng/g fresh tissue, fetus 4 ng/g, placenta 2.97 ng/g, brain 1.68 ng/g, and fetal plasma 0.52 ng/g. All TCP peaks occurred at 5 min except for fetus at 30 min and fetal plasma at 15 min. Parent chlorpyrifos was detected in maternal plasma and liver at maximum concentrations of 5.1 micro g/ml and 0.40 micro g/g, respectively, at 5 min. Chlorpyrifos was detectable in maternal plasma up to 36 h after dosing, and in liver up to 24 h after dosing. Pharmacokinetic analysis best described radioactivity, chlorpyrifos, and TCP as disappearing biexponentially from plasma and tissues. The terminal elimination half-lives of radioactivity, chlorpyrifos and TCP from maternal plasma were 16, 18, and 16 h, respectively. The results indicate that (1). chlorpyrifos undergoes a rapid metabolism to its major metabolites (TCP); (2). chlorpyrifos and its metabolites are distributed to all maternal and fetal tissues and plasma; and (3). the elimination of chlorpyrifos and TCP is slow, with redistribution from lipid stores a likely determinant of elimination rates.


Subject(s)
Chlorpyrifos/pharmacokinetics , Fetus/metabolism , Insecticides/pharmacokinetics , Maternal-Fetal Exchange , Placenta/metabolism , Animals , Area Under Curve , Brain/metabolism , Chlorpyrifos/blood , Female , Fetal Blood/chemistry , Injections, Intravenous , Insecticides/blood , Liver/metabolism , Pregnancy , Rats , Rats, Sprague-Dawley , Tissue Distribution
7.
Neurochem Res ; 27(3): 183-93, 2002 Mar.
Article in English | MEDLINE | ID: mdl-11958515

ABSTRACT

Diisopropyl phosphorofluoridate (DFP) produces organophosphorus-ester-induced delayed neurotoxicity in sensitive species. We studied the effect of single dose of DFP on the expression of phosphorylated cAMP-response element binding protein (p-CREB), which is a well known transcription factor involved in several pathways mediating different types of external stimuli. The hens were perfused with neutral buffered formalin at different time points, i.e., 0.5, 1.0, and 2.0 hrs, as well as 1, 2, 5, and 20 days after dosing. The central nervous system regions of the whole brain were dissected and 7-micron sections were stained for either p-CREB immunopositivity or with hematoxylin and eosin. Results indicated an early differential increase of p-CREB immunopositivity in susceptible regions such as cerebellum, brainstem, and midbrain within 2 hrs. These induced levels persisted upto 5 days in these tissues, although the time course of p-CREB immunopositivity was distinctly different for each region. In the cerebellum induction of p-CREB was seen in the granular layer where both the granulocytes and the glial cells showed induction. Increased immunopositivity for p-CREB in the Purkinje cells and in some basket cells of the molecular layer was noticed over time, but the induction was not as great as in the granular layer. Of all the tissues cerebellum showed the strongest intensity of immunopositivity of the cells as well as the highest (absolute) number of pCREB-positive cells. The brainstem showed a similar fluctuating pattern like the cerebellum with the highest percentage increase of the immunoreactive cells at 5 days preceded by the lowest dip in immunopositivity at 2 days. In the midbrain, there was a time-dependent increase in the immunopositivity from 0.5 hr onwards until reaching control levels at 20 days. Immunopositivity was also noted in portions of the spina medularis and spina oblongata. The cerebrum (non-susceptible tissue) of DFP-treated hens did not show much deviation from the controls. The endothelial cells of the susceptible regions showed induction at early time points, in contrast to the absence of induction in cerebrum. Spatial and temporal differences in the immunopositivity pattern indicate probable involvement of CREB-independent pathways also. Overall, the complex induction pattern of p-CREB, along with our earlier observations of the early induction of c-fos, c-jun and Protein Kinase A (PKA) as well as the induction of Calcium2+/Calmodulin dependent Protein Kinase II (CaM kinase II) at later periods, strongly suggest an activator role of CREB mediated pathways that may lead to the clinical development of delayed neurotoxicity.


Subject(s)
Brain/metabolism , Isoflurophate/pharmacology , Neurotoxins/pharmacology , Nuclear Proteins/metabolism , Trans-Activators/metabolism , Animals , Brain/drug effects , Brain Stem/drug effects , Brain Stem/metabolism , CREB-Binding Protein , Cerebellum/drug effects , Cerebellum/metabolism , Chickens , Female , Kinetics , Mesencephalon/drug effects , Mesencephalon/metabolism , Telencephalon/drug effects , Telencephalon/metabolism , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...