Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Omega ; 8(37): 33580-33592, 2023 Sep 19.
Article in English | MEDLINE | ID: mdl-37744862

ABSTRACT

Methylene blue (MB) dye or methyl thioninium chloride is one of the hazardous cationic dyes that are discharged into the textile effluent causing a highly negative environmental impact. The present work targets the investigation of the adsorption performance of some chitosan-modified products toward the MB dye from simulated solutions. The claimed chitosan derivatives were prepared, characterized, and applied for the removal of lead and copper cations from an aqueous medium in a previous work. These include: N,O-carboxymethyl chitosan (N,O-CM/Cs), chitosan grafted with glutaraldehyde (Cs/GA), chitosan cross-linked with GA/epichlorohydrin (Cs/GA/ECH), and chitosan cross-linked with glutaraldehyde/methylene bis(acrylamide) (Cs/GA/MBA). The modified chitosan derivatives in this study displayed outstanding mechanical qualities, exceptional reusability, and a significant amount of adsorption capacity. The ability of prepared Cs derivatives to eradicate MB was as follows: N,O-CM/Cs (95.1 mg/g) < Cs/GA (120.1 mg/g) < Cs/GA/ECH (220.1 mg/g) < Cs/GA/MBA (270.0 mg/g). The swelling performance of the prepared sorbents was verified under different experimental conditions, and the data revealed that the maximum swelling was attained at pH = 9, temperature 55 °C, and after 24 h. The produced Cs derivatives showed exceptional reusability by maintaining higher adsorption effectiveness throughout five cycles. The MB dye was adsorbed onto the modified derivatives according to pseudo-second-order kinetics and the Langmuir model. Moreover, the adsorption process was monitored via atomic force microscopy to verify the differences between the dye-free and dye-loaded adsorbents.

2.
ACS Omega ; 8(11): 10086-10099, 2023 Mar 21.
Article in English | MEDLINE | ID: mdl-36969416

ABSTRACT

Modified uncrosslinked and crosslinked chitosan derivatives were investigated as green sorbents for the removal of copper (Cu2+) and lead (Pb2+) cations from simulated solutions. In this regard, N, O carboxymethyl chitosan (N, O CMC), chitosan beads (Cs-g-GA), chitosan crosslinked with glutaraldehyde/methylene bisacrylamide (Cs/GA/MBA), and chitosan crosslinked with GA/epichlorohydrin (Cs/GA/ECH) were prepared and characterized by Fourier transform infrared spectroscopy, X-ray diffraction, thermogravimetric analysis, and scanning electron microscopy analyses. Atomic force microscopy investigation was carried out to compare the surface topography of the prepared samples before and after the metal uptake. The kinetics of the removal process were investigated by pseudo-first-order and -second-order models. Moreover, the adsorption isotherms were carefully studied by applying Langmuir and Freundlich models. The data reveal that upon adsorption of copper(II) metal ions, all chitosan-modified products followed the Langmuir isotherm except for Cs/GA/ECH which followed the Freundlich isotherms, and the highest adsorption capacity (q e) was obtained for Cs/GA/MBA due to the formation of stable chelate structures between the metal cation and the functional groups present on the modified chitosan product. The order of metal uptake at the optimum pH value is as follows: Cs/GA/MBA (Cu: 95.7 mg/g, Pb: 99.15 mg/g), Cs/GA/ECH (Cu: 80.4 mg/g, Pb: 93.14 mg/g), Cs-g-GA (Cu: 77 mg/g, Pb: 88.4 mg/g), and N, O CMCh (Cu: 30.2 mg/g, Pb: 44.8 mg/g). The AFM data confirmed the metal uptake process by comparing the roughness and height measurements of the free sorbents and the metal-loaded sorbents.

3.
Environ Sci Pollut Res Int ; 30(10): 25903-25919, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36348240

ABSTRACT

In this study, chitosan (Ch) is adapted via green methodology including sonication induced crosslinking with different weight ratios of erythritol (Er) from (Ch-Er)1 to (Ch-Er)4. The products were casted in the form of thin films. The chemical modification was proved via FTIR spectroscopy. Then, the modified products were verified via an atomic force microscopy (AFM) investigation for their topography and surface properties. The data revealed that the optimized sample was (Ch-Er)3. This sample was further modified by different weight ratios of graphene oxide 0.1, 0.2, 0.4, and 0.8 wt./wt. (symbolized as (Ch-Er)3GO1, (Ch-Er)3GO2, (Ch-Er)3GO4, and (Ch-Er)3GO8 respectively). The prepared samples were investigated by different analytical tools. Then, the adjusted sample (Ch-Er)3GO2 was irradiated by electron beam (e-beam) at 10 and 20 kGy of irradiation doses to give samples (Ch-Er)3GO2R10 and (Ch-Er)3GO2R20, respectively. The AFM data of the irradiated samples showed that the pore size decreases, and surface roughness increases at higher energy e-beam due to the formation of more crosslinking points. The optimum samples of the prepared formulations were tested as sorbent materials for simultaneous elimination of methylene blue (MB) dye and mercury cation (Hg2+) from simulated solutions. The maximum removal of both MB dye and Hg2+ cation was achieved by (Ch-Er)3GO2R10 (186.23 mg g-1 and 205 mg g-1) respectively.


Subject(s)
Chitosan , Graphite , Mercury , Chitosan/chemistry , Adsorption , Graphite/chemistry
4.
Environ Sci Pollut Res Int ; 27(21): 26982-26997, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32385819

ABSTRACT

Three smart novel polystyrene-based hydrogel nanocomposites were introduced for recovery of some divalent heavy metals (Cu2+ ad Pb2+) from simulated solutions for industrial wastewater remediation. In this regard, magnetic nanoparticles were prepared then fabricated with polystyrene waste and a copolymer of acrylic acid and acrylamide in presence of an initiator/crosslinking system. The chemical amendment process was established by the IR spectroscopy and the prepared hydrogels were characterized by the AFM microscopy and XRD analysis. Moreover, the elimination efficacy of the prepared hydrogels was monitored for Cu2+ and Pb2+versus different temperatures and pH values in simulated solution. The data showed a direct relation between the contact time and the amount of the metal removed. Moreover, it was found that the removal efficiency decreases within the region between LCST of polyacrylamide and HCST of polystyrene. It was also proved that maximum metal removal was attained at neutral pH. The maximum removal was achieved by the hydrogel with minimum magnetite content with removal capacity of 128 mg/g of Cu2+ and 122 mg/g of Pb2+ in single removal experiments at optimum test conditions. In double removal experiments, the prepared hydrogels showed obvious selectivity towards Cu2+ ions. The reusability of the investigated hydrogels was examined at three swelling-deswelling cycles.


Subject(s)
Metals, Heavy , Water Pollutants, Chemical/analysis , Adsorption , Cations , Hydrogels , Hydrogen-Ion Concentration , Magnetic Phenomena , Polystyrenes , Solutions
SELECTION OF CITATIONS
SEARCH DETAIL
...