Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Biol Rep ; 47(3): 1733-1749, 2020 Mar.
Article in English | MEDLINE | ID: mdl-31983015

ABSTRACT

Black mulberry (Morus nigra) leaves is broadly used in traditional medicine worldwide. However, there are no scientific reports regarding testicular protection, hepato-and nephroprotective activities of M. nigra leaves. The present investigation was assessed the protective mechanism by which methanol extract from M. nigra leaves suppressed the damaging effects induced by paracetamol (APAP) in different mouse tissues. Male mice were orally given APAP (500 mg/kg) with or without M. nigra extract (150, 300, and 500 mg/kg) for four consecutive days. The results showed that crude extract possessed potent antioxidant activity (EC50 = 42.97 µg extract/mL) due to the presence of a high amount of polyphenol and flavonoid compounds. Gallic acid, chlorogenic acid, catechin, and rutin were isolated from the n-butanol fraction of M. nigra extract. Unexpectedly, oral administration of APAP did not induce chromosomal aberrations in mouse bone marrow; however, it produced damaging effects on testis, liver, and kidney tissues. Interestingly, M. nigra extract suppressed APAP-induced genotoxicity by lowering meiotic chromosomal aberrations in spermatocytes, morphological sperm abnormalities, and % DNA damage in comet tail in the liver and kidney tissues. The altered levels of glutathione S transferase activity, lipid peroxidation, liver, and kidney functions were significantly reversed when M. nigra was given to APAP group. The restoring of the histo-architectural distortions and decreasing over-expression of p53 protein as determined by immunohistochemistry in the liver, kidney, and testis sections were strengthened the protective activity of M. nigra extract. Conclusion, the bioactive components in the leaves of black mulberry appear to be a good candidate for genetic protection, treatment of oxidative stress-induced organotoxicity.


Subject(s)
Acetaminophen/toxicity , Kidney/drug effects , Liver/drug effects , Morus/chemistry , Plant Extracts/pharmacology , Testis/drug effects , Analgesics, Non-Narcotic/toxicity , Animals , Antioxidants/pharmacology , Chromosome Aberrations/chemically induced , Chromosome Aberrations/drug effects , Comet Assay , DNA Damage/drug effects , Kidney/metabolism , Kidney/pathology , Liver/metabolism , Liver/pathology , Male , Mice , Phytotherapy/methods , Plant Leaves/chemistry , Testis/metabolism , Testis/pathology
2.
Environ Sci Pollut Res Int ; 25(28): 27858-27876, 2018 Oct.
Article in English | MEDLINE | ID: mdl-30056541

ABSTRACT

The present research designed to assess the protective role of Salvia officinalis essential oil (SO) against carbon tetrachloride (CCl4)-induced liver and kidney damage in mice. This is evidenced by estimation of antiradical scavenging activity of SO using DPPH assay, biochemical markers, histological investigation of liver and kidney sections, and comet assay. Mice were given CCl4 (1.2 mL/kg for 24 h or 0.8 mL/kg for 2 weeks, 3 times/week) and with or without SO (0.1, 0.2, and 0.4 mL/kg, for 2 week, 5 times/week). The findings demonstrated that both acute and subacute treatment with CCl4 alone had adverse side effects on liver and kidney of mice. These effects were evidenced by a significant increase in serum hepatic enzymes (ALT, AST, ALP, LDH, and G-GT), bilirubin, and renal function markers (blood urea, creatinine). Toxic effect of CCl4 was accompanied by a decline in the serum total protein, albumin, globulin, and prothrombin (%). CCl4 induced oxidative stress as evidenced by increasing serum lipid peroxidation (LPO) along with decreasing serum total glutathione S transferase (GST). A remarkable increase in hepatic DNA strand breakages and histopathological distortion in liver and kidney specimens were observed in CCl4-intoxicated groups. Ultrastructurally, hepatocytes exhibited irregular nuclei, vacuolated cytoplasm, and distorted microorganelles. Essential oil form S. officinalis possessed antiradical scavenging (EC50 = 4602 µg/mL) lower than ascorbic acid (EC50 = 5.9 µg/mL). This oil was effectively exhibited hepato-nephroprotective activity especially at its higher concentrations in co-treated groups (SO plus CCl4). The activity of SO was associated with lowering the liver enzymes, bilirubin, urea, and creatinine, along with increasing total protein, albumin, globulin, and prothrombin. The increase in GST content and the decrease in LPO and DNA breakage levels, alongside repairing the histo-architectural distortions further confirmed the protective activity of SO. SO is a potential candidate for counteracting hepato/renal injury associating CCl4. This effect may occur via antioxidant defense mechanism which in part related to the complexity of its chemical constituents.


Subject(s)
Antioxidants/pharmacology , DNA Damage/drug effects , Kidney/drug effects , Liver/drug effects , Oils, Volatile/pharmacology , Oxidative Stress/drug effects , Salvia officinalis/chemistry , Animals , Antioxidants/isolation & purification , Comet Assay , Egypt , Kidney/metabolism , Kidney/pathology , Lipid Peroxidation/drug effects , Liver/metabolism , Liver/pathology , Liver Function Tests , Male , Mice , Oils, Volatile/isolation & purification
3.
Article in English | MEDLINE | ID: mdl-29412864

ABSTRACT

Cajanus cajan (L.) is a Pigeon pea cultivated in tropical and subtropical areas. It contains many bioactive components. The present study aimed to assess the antimutagenic efficacy of a flavonoid fraction of Cajanus cajan (FFCC) to reduce cytotoxicity and genotoxicity induced by cyclophosphamide (CP). We assessed genotoxic and cytotoxic effects using chromosome aberration, in mouse bone-marrow cells and spermatocytes, cell viability and DNA damage, in mouse bone-marrow cells. Animals received FFCC at concentrations 50,100 and 200 mg/kg b wt by oral gavage, and injected simultaneously with CP (20 mg/kg b wt) for 24 h. The results revealed that FFCC was safe and its effect was normal compared to control group. Moreover, we observed significant inhibition of CP-induced chromosome abnormalities in both, somatic and germ, cells (p ≪ 0.05) after concurrent administration of different concentrations of FFCC and CP. FFCC reduced chromosome aberrations by 14.29%, 25.21% and 28.57% in somatic cells, and 25.35%, 35.21% and 49.29% in germ cells after simultaneous treatment with CP respectively. Additionally, FFCC improved the cell viability of bone-marrow cells in a concentration-dependent manner when administered concurrently with CP. Similarly, FFCC diminished DNA damage (p ≪ 0.05) in CP-treated animals. The inhibitory index of tail DNA (%) reached 90.6% at the highest concentration of FFCC when administered simultaneously with CP. In conclusion, the flavonoid extract improved cell viability and protected animal cells from the cytotoxic and genotoxic effects exhibited by CP. Cajanus cajan flavonoids might contain the antioxidant bioactivity that effectively lessened chromosome aberrations and DNA damage induced by mutagenic agents.


Subject(s)
Antineoplastic Agents, Alkylating/toxicity , Cajanus/chemistry , Cyclophosphamide/toxicity , Drug-Related Side Effects and Adverse Reactions/drug therapy , Flavonoids/administration & dosage , Animals , Apoptosis/drug effects , Bone Marrow Cells/cytology , Bone Marrow Cells/drug effects , Cell Survival , Chromosome Aberrations/drug effects , Disease Models, Animal , Drug-Related Side Effects and Adverse Reactions/genetics , Flavonoids/chemistry , Flavonoids/pharmacology , Male , Mice , Spermatocytes/cytology , Spermatocytes/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...