Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 57
Filter
1.
Article in English | MEDLINE | ID: mdl-38879794

ABSTRACT

Aquafeed additive quality and quantity remain pivotal factors that constrain the sustainability and progress of aquaculture feed development. This study investigates the impact of incorporating the benthic diatom Amphora coffeaeformis into the diet of Nile tilapia (Oreochromis niloticus) broodstock, on the blood biochemistry, steroid hormone (SH) levels and seed production efficiency. Broodstock females displaying mature ovary indications were initially combined with males at a ratio of three females to one male. A total of 384 adult Nile tilapia (288 females and 96 males) were used, with 32 fish (24 females and eight males) assigned to each of 12 concrete tanks (8 m³; 2 m × 4 m × 1 m), with three replicate tanks for each dietary treatment, throughout a 14-day spawning cycle until egg harvest. Fish were fed one of four different dietary treatments: AM0% (control diet), and AM2%, AM4% and AM6% enriched with the diatom A. coffeaeformis at levels of 20, 40 and 60 g/kg of diet respectively. At the trial's conclusion, total protein, albumin, triglyceride and creatinine), SHs (follicle-stimulating hormone, luteinizing hormone, free testosterone, total testosterone, progesterone and prolactin) and seeds production efficiency of Nile tilapia improved significantly (p < 0.05) in alignment with the increment of A. coffeaeformis supplementation. The findings propose that including A. coffeaeformis at levels ranging from 4% to 6% could be effectively employed as a feed additive during the Nile tilapia broodstock's spawning season.

2.
Front Cell Infect Microbiol ; 14: 1358270, 2024.
Article in English | MEDLINE | ID: mdl-38895734

ABSTRACT

Introduction: Candida albicans (C. albicans) can form biofilms; a critical virulence factor that provides effective protection from commercial antifungals and contributes to public health issues. The development of new antifungal therapies, particularly those targeting biofilms, is imperative. Thus, this study was conducted to investigate the antifungal and antibiofilm effects of Lactobacillus salivarius (L. salivarius), zinc nanoparticles (ZnNPs) and nanocomposites (ZnNCs) on C. albicans isolates from Nile tilapia, fish wash water and human fish sellers in Sharkia Governorate, Egypt. Methods: A cross-sectional study collected 300 samples from tilapia, fish wash water, and fish sellers (100 each). Probiotic L. salivarius was immobilized with ZnNPs to synthesize ZnNCs. The study assessed the antifungal and antibiofilm activities of ZnNPs, L. salivarius, and ZnNCs compared to amphotericin (AMB). Results: Candida spp. were detected in 38 samples, which included C. albicans (42.1%), C. glabrata (26.3%), C. krusei (21.1%), and C. parapsilosis (10.5%). A total of 62.5% of the isolates were resistant to at least one antifungal agent, with the highest resistance to nystatin (62.5%). However, 75% of the isolates were highly susceptible to AMB. All C. albicans isolates exhibited biofilm-forming capabilities, with 4 (25%) isolates showing strong biofilm formation. At least one virulence-associated gene (RAS1, HWP1, ALS3, or SAP4) was identified among the C. albicans isolates. Probiotics L. salivarius, ZnNPs, and ZnNCs displayed antibiofilm and antifungal effects against C. albicans, with ZnNCs showing significantly higher inhibitory activity. ZnNCs, with a minimum inhibitory concentration (MIC) of 10 µg/mL, completely reduced C. albicans biofilm gene expression. Additionally, scanning electron microscopy images of C. albicans biofilms treated with ZnNCs revealed asymmetric, wrinkled surfaces, cell deformations, and reduced cell numbers. Conclusion: This study identified virulent, resistant C. albicans isolates with strong biofilm-forming abilities in tilapia, water, and humans, that pose significant risks to public health and food safety.


Subject(s)
Antifungal Agents , Biofilms , Candida albicans , Cichlids , Ligilactobacillus salivarius , Microbial Sensitivity Tests , Nanocomposites , Probiotics , Zinc , Animals , Biofilms/drug effects , Candida albicans/drug effects , Nanocomposites/chemistry , Antifungal Agents/pharmacology , Zinc/pharmacology , Probiotics/pharmacology , Humans , Ligilactobacillus salivarius/drug effects , Ligilactobacillus salivarius/physiology , Egypt , Nanoparticles/chemistry , Water Microbiology
3.
PLoS One ; 19(6): e0299480, 2024.
Article in English | MEDLINE | ID: mdl-38917116

ABSTRACT

This study evaluates the impact of dietary supplementation of the blue-green alga Arthrospira platensis NIOF17/003 nanoparticles (AN) on the growth performance, whole-body biochemical compositions, blood biochemistry, steroid hormonal, and fry production efficiency of Nile tilapia (Oreochromis niloticus) broodstock, during the spawning season. After a 21-day preparation period to equip the females and ensure that their ovaries were filled with eggs, mating between the mature females and males took place in a 3:1 ratio during a 14-day spawning cycle. A total of 384 tilapia broodstock 288 females and 96 males with an initial body weight of 450.53±0.75, were divided into four groups; AN0: a basal diet as a control group with no supplementation of Arthrospira platensis, and the other three groups (AN2, AN4, and AN6) were diets supplemented with nanoparticles of A. platensis at levels of 2, 4, and 6 g kg─1 diet, respectively. The results found that fish-fed group AN6 showed the highest significant differences in weight gain (WG), final weight (FW), feed conversion ratio (FCR), protein efficiency ratio (PER), and feed efficiency ratio (FER). Females fed the AN6 diet showed the highest significant fat content. Compared to the AN0 group, fish fed on the supplemented diets showed significant improvement (p < 0.05) in triglyceride, glucose, and aspartate aminotransferase (AST). A gradual increase in AN inclusion level resulted in a gradual increase in the concentrations of luteinizing hormone (LH), and follicle-stimulating hormone (FSH), testosterone, progesterone, and prolactin. The rates (%) of increase in fry production for females fed supplemented diets were 10.5, 18.6, and 32.2% for AN2, AN4, and AN6, respectively, compared to the control group. This work concluded that the inclusion levels of 6 g kg─1 of A. platensis nanoparticles in the diet of Nile tilapia broodstock significantly improved the growth performances, steroid hormone concentrations, and increased the fry production efficiency by 32.2%, respectively. These findings revealed that A. platensis nanoparticles resulted in a significantly enhanced female' reproductive productivity of Nile tilapia broodstock.


Subject(s)
Animal Feed , Cichlids , Dietary Supplements , Nanoparticles , Reproduction , Spirulina , Animals , Female , Reproduction/drug effects , Cichlids/growth & development , Cichlids/metabolism , Cichlids/physiology , Male , Animal Feed/analysis , Gonadal Steroid Hormones/blood , Gonadal Steroid Hormones/metabolism
4.
Pestic Biochem Physiol ; 198: 105725, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38225080

ABSTRACT

This study aimed to examine the effects of gibberellic acid (GBA) on growth, hemato-biochemical parameters related to liver functions, digestive enzymes, and immunological response in Oreochromis niloticus. Besides, the probable underlying mechanisms were explored by assessing antioxidant, apoptotic, and immune-related gene expression. Furthermore, the likelihood of restoration following alpha-lipoic acid (LIP) dietary supplementation was explored. The fish (average initial weight 30.75 ± 0.46) were equally classified into four groups: the control group, the LIP group (fed on a basal diet plus 600 mg/kg of LIP), the GBA group (exposed to 150 mg GBA/L), and the GBA + LIP group (exposed to 150 mg GBA/L and fed a diet containing LIP and GBA) for 60 days. The study findings showed that LIP supplementation significantly reduced GBA's harmful effects on survival rate, growth, feed intake, digestive enzymes, and antioxidant balance. Moreover, the GBA exposure significantly increased liver enzymes, stress markers, cholesterol, and triglyceride levels, all of which were effectively mitigated by the supplementation of LIP. Additionally, LIP addition to fish diets significantly minimized the histopathological alterations in the livers of GBA-treated fish, including fatty change, sharply clear cytoplasm with nuclear displacement to the cell periphery, single-cell necrosis, vascular congestion, and intralobular hemorrhages. The GBA-induced reduction in lysozyme activity, complement C3, and nitric oxide levels, together with the downregulation of antioxidant genes (cat and sod), was significantly restored by dietary LIP. Meanwhile, adding LIP to the GBA-exposed fish diets significantly corrected the aberrant expression of hsp70, caspase- 3, P53, pcna, tnf-a, and il-1ß in O. niloticus liver. Conclusively, dietary LIP supplementation could mitigate the harmful effects of GBA exposure on fish growth and performance, physiological conditions, innate immunity, antioxidant capability, inflammatory response, and cell apoptosis.


Subject(s)
Cichlids , Gibberellins , Thioctic Acid , Animals , Antioxidants/pharmacology , Antioxidants/metabolism , Dietary Supplements , Thioctic Acid/pharmacology , Thioctic Acid/metabolism , Cichlids/genetics , Oxidative Stress , Gene Expression
5.
Animals (Basel) ; 13(24)2023 Dec 15.
Article in English | MEDLINE | ID: mdl-38136899

ABSTRACT

The impact of microbial muramidase (MMUR) addition to broiler chicken rations was evaluated through growth parameters, liver histoarchitecture, antioxidant status, biochemical analysis, and expression of pro-inflammatory cytokines for 35 days. Four hundred three-day-old chicks (97.68 ± 0.59 g) were distributed to four distinct groups with ten duplicates each (100 chicks/group) consisting of: group 1 (G1): a basal diet without MMUR (control group); G2: a basal diet + 200 mg MMUR kg-1 G3: a basal diet + 400 mg MMUR kg-1; and G4: a basal diet + 600 mg MMUR kg-1. The results showed that the final body weight and total weight gain were increased (p = 0.015) in birds fed with diets supplemented with MMUR at 600 mg kg-1. The feed conversion ratio (FCR) was improved in all treatment groups compared with the control group. Birds fed with a diet supplemented with 600 mg MMUR kg-1 showed the highest body weight gain and improved FCR. The values of thyroxin hormones and growth hormones were increased in all MMUR-supplemented groups. Dietary MMUR increased the activities of antioxidant enzymes (total antioxidant activity, catalase, and superoxide dismutase) and decreased the activity of malondialdehyde (p < 0.05). In addition, it increased the values of interleukin 1 beta and interferon-gamma compared with the control group. Furthermore, dietary MMUR increased the expression of transforming growth factor-beta immunostaining in the liver and spleen tissues. Our results show that supplementing broilers' diets with 600 mg MMUR kg-1 could enhance the chicken growth rate and improve their antioxidant, inflammatory, and anti-inflammatory responses.

6.
Pestic Biochem Physiol ; 196: 105598, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37945227

ABSTRACT

Globally, gibberellic acid (GA) is one of the extensively used plant growth regulators in agriculture. Yet, there is limited information about their toxicity to fish. Recently, alpha lipoic acid (ALA) has drawn much interest due to its antioxidant properties. This study was planned to determine whether ALA might protect Nile tilapia's kidneys from the toxic effects of GA and the probable underlying mechanisms. Thus, 240 Oreochromis niloticus fish (average initial weight 30.67 ± 0.57) were allocated into four groups received a basal diet or a basal diet supplemented with 600 mg/kg ALA or a basal diet but exposed to a GA (150 mg/L), or ALA-fortified diet and concurrently exposed to GA as previously described. After 60 days, hematological, oxidative stress, lipid peroxidation, stress indices, selected kidney toxic byproducts, histological investigations, and associated gene expression were assessed. Anemia, leukopenia, hypoproteinemia, and elevated kidney function indicators were noticed in the GA-treated group. Additionally, there were detectable cortisol, glucose, 8-OHdG, and MDA increases. However, there was a considerable drop in Cat, Sod, Gpx, GSH, and AChE levels. Structural damage to the kidneys was also identified. In the kidney of fish treated with GA, pro-inflammatory cytokines (tnfα, il-1ß), stress, and apoptotic genes (hsp70, pcna, caspase-3, and p53) genes were markedly up-regulated, while anti-oxidative (cat, sod) gene expression was downregulated. Conversely, adding ALA to the diet abolished the GA-induced changes in most of the markers mentioned above. Conclusively, ALA protects against GA-induced hematotoxicity, oxidative damage, and nephrotoxic effects in Nile tilapia fish.


Subject(s)
Cichlids , Thioctic Acid , Animals , Thioctic Acid/pharmacology , Inflammation , Oxidative Stress , Antioxidants/pharmacology , Apoptosis , Gene Expression
7.
Animals (Basel) ; 13(20)2023 Oct 23.
Article in English | MEDLINE | ID: mdl-37894020

ABSTRACT

This study aims to examine the effects of supplementing male rabbit diets with nanoparticles of zinc oxide (Nano-ZnO) and Acacia nilotica fruit powder (ANFP) on production sustainability under hot climatic conditions. Eighty Californian male rabbits aged 40 days old (average body weight 738.5 ± 11 g) were divided into four treatment groups and administered one of the following diets: control diet, Nano-ZnO (50 mg/kg), ANFP (5 g/kg), or a combination of Nano-ZnO (50 mg/kg) and ANFP (5 g/kg) for a period of 60 days. Each of the 20 rabbits used in a treatment was regarded as a replicate. The results showed that adding Nano-ZnO and ANFP individually or in combination to rabbits' diets improved (p < 0.05) growth performance in comparison to control. In addition, zinc contents in serum or the testis tissues in the Nano-ZnO- and ANFP-treated rabbits were significantly greater (p < 0.05) than those in the control group. In addition, serum levels of creatinine, alanine aminotransferase, and aspartate aminotransferase were decreased (p < 0.05) by supplementation of Nano-ZnO, ANFP, or their combination. Carcass criteria did not differ among the treatments. Overall, the findings of the present study indicate that rabbits fed diets containing Nano-ZnO and ANFP, as well as their combination, showed improvements in growth performance, kidney and liver functions, as well as zinc retention in tissues under hot climatic conditions. The combination of Nano-ZnO and ANFP exhibited the best performance in the rabbits. More research on the synergistic effects of Nano-ZnO and ANFP in the sustainable production of rabbit meat is required.

8.
Animals (Basel) ; 13(12)2023 Jun 09.
Article in English | MEDLINE | ID: mdl-37370443

ABSTRACT

This study aimed to evaluate the efficacy of dietary Acacia nilotica bark bioactive lipid compounds (ANBBLCs) as novel feed additives on the growth performance, carcass criteria, antioxidants, and antimicrobial activities of growing male rabbits. A total of 100 California male weanling rabbits aged 35 days were divided into four nutritional treatments, each of which contained ANBBLCs at concentrations of 0 (control group), 50, 100, and 150 mg/kg diet (n = 25 per treatment, each replication consisting of one animal). The average body weight of the animals was 613 ± 14 g. The experiments lasted for 56 days. Dietary ANBBLC levels linearly improved (p < 0.05) the body weight, body weight gain, and feed conversion ratio (FCR) of rabbits. Furthermore, with increasing concentrations of ANBBLCs, the total antioxidant capacity of blood and liver tissue was linearly (p < 0.05) enhanced. Lactobacillus increased and Staphylococcus decreased (p < 0.05) in comparison to the control group when ANBBLC levels were added to the diets of rabbits. Rabbit diets supplemented with ANBBLCs increased dressing percentages and decreased abdominal fat. This study shows that ANBBLCs can be used as a feed additive to enhance the growth performance, carcass criteria, antioxidant, and antibacterial properties of growing rabbits.

9.
Animals (Basel) ; 13(8)2023 Apr 15.
Article in English | MEDLINE | ID: mdl-37106919

ABSTRACT

The study aimed to explore how broiler chickens' blood biochemistry, breast muscles' fatty acid profile, growth, intestinal morphology, and immune status would be influenced by adding microbial muramidase (MUR) to the diet. Four hundred 3-day-old male broiler chickens were allocated to a completely randomized design consisting of four nutritional treatments (n = 100 per treatment, 10 chicks/replicate), each containing MUR at levels of 0 (control group), 200, 400, and 600 mg Kg-1 diet, with enzyme activity 0, 12,000, 24,000, and 36,000 LSU(F)/kg diet, respectively. The 35-day experiment was completed. The findings showed that adding MUR to broiler meals in amounts of 200, 400, or 600 mg/kg had no impact on growth performance (p > 0.05) during the periods of 4-10, 11-23, and 24-35 days of age. MUR supplementation quadratically impacted the feed conversion ratio of broiler chicks at 11 and 23 days of age (p = 0.02). MUR addition to the diet significantly and level-dependently enhanced the percentage of n-3 and n-6 polyunsaturated fatty acids (PUFA) in breast muscles (p ≤ 0.01), with no alterations to the sensory characteristics of the breast muscles. Dietary MUR increased most of the morphometric dimensions of the small intestine, with the best results recorded at the 200 and 400 mg Kg-1 levels. MUR supplementation at 200, 400, and 600 mg kg-1 linearly lowered the total cholesterol, triglycerides, and low-density lipoprotein cholesterol level (p < 0.01). Still, it significantly increased the high-density lipoprotein cholesterol and very-low-density lipoprotein cholesterol contents compared with the unsupplemented group. Compared to controls, there was a substantial rise in the blood concentration of total protein, albumin, globulin, IL10, complement 3, and lysozyme activity as MUR levels increased (p < 0.01). Moreover, MUR addition significantly increased the immunoexpression of lymphocyte subpopulation biomarkers. We could conclude that MUR can be added to broiler chicken diets up to 600 mg kg -1 to improve broiler chickens' fatty acid profile in breast muscles, immunity, and blood biochemistry. MUR addition had no positive influence on the bird's growth.

10.
Anim Biotechnol ; 34(9): 4869-4877, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37067444

ABSTRACT

This study was performed to examine the influences of Spirulina platensis powder (SPP) on growth performance, physiological status, blood biochemistry, and intestinal microbial population in quail. 240-10-days old Japanese quail chicks were distributed into five groups. Each group had four replicate pens with 12 birds each. The first group received a basal diet (control group). Groups from two to five received the basal diet with SPP at levels of 1.5, 3.0, 4.5, and 6.0% as dietary ingredients, respectively. Results clarified significantly higher live body weight and body weight gain (p < 0.001) with significant enhancements (p < 0.001) in feed conversion values for groups that received SPP levels, especially 4.5% compared with the control and other groups. Birds fed on a diet containing SPP had significantly higher amylase, trypsin and lipase levels (p < 0.001) than the control. Intestinal Lactobacillus sp. was significantly increased, and Escherichia coli and Salamonella populations were significantly decreased by dietary SPP levels (p < 0.001). Liver function, total lipid profile, antioxidant parameters and immune response were significantly affected by SPP levels compared with the control (p < 0.001). In conclusion, the inclusion of SPP until 4.5% in quail diets could improve the growth performance, intestinal microbial population and serum biochemical constituents of growing quail.


Subject(s)
Antioxidants , Coturnix , Spirulina , Animals , Antioxidants/pharmacology , Antioxidants/metabolism , Dietary Supplements , Powders , Diet/veterinary , Quail/metabolism , Body Weight , Immunity , Animal Feed/analysis
11.
Life (Basel) ; 13(3)2023 Mar 10.
Article in English | MEDLINE | ID: mdl-36983906

ABSTRACT

Recently, researchers have been intensively looking for novel, safe antibiotic alternatives because of the prevalence of many clinical and subclinical diseases affecting bird flocks and the risks of using antibiotics in subtherapeutic doses as feed additives. The present study intended to evaluate the potential use of 1,3-ß-glucans (GLC) as antibiotic alternative growth promotors and assessed the effect of their dietary inclusion on the growth performance, carcass traits, chemical composition of breast muscles, economic efficiency, blood biochemical parameters, liver histopathology, antioxidant activity, and the proinflammatory response of broiler chickens. This study used 200 three-day-old ROSS broiler chickens (50 chicks/group, 10 chicks/replicate, with an average body weight of 98.71 ± 0.17 g/chick). They were assigned to four experimental groups with four dietary levels of GLC, namely 0, 50, 100, and 150 mg kg-1, for a 35-day feeding period. Birds fed diets containing GLC showed an identical different growth rate to the control group. However, the total feed intake (TFI) increased quadratically in the GLC50 and GLC100 groups as compared to that in the control group. GLC addition had no significant effect on the weights of internal and immune organs, except for a decrease in bursal weight in the GLC150 group (p = 0.01). Dietary GLC addition increased the feed cost and total cost at 50 and 100 mg kg-1 doses. The percentages of n-3 and n-6 PUFA in the breast muscle of broiler chickens fed GLC-supplemented diets increased linearly in a dose-dependent manner (p < 0.01). The serum alanine aminotransferase (ALT) level and the uric acid level were quadratically increased in the GLC150 group. The serum levels of total antioxidant capacity, catalase, superoxide dismutase, interleukin-1ß, and interferon-gamma linearly increased, while the MDA level decreased in the GLC-fed groups in a dose-dependent manner. Normal histological characterization of different liver structures in the different groups with moderate round cells was noted as a natural immune response around the hepatic portal area. The different experimental groups showed an average percentage of positive immunostaining to the proinflammatory marker transforming growth factor-beta with an increase in the dose of GLC addition. The results suggest that GLC up to 100 mg kg-1 concentration can be used as a feed additive in the diets of broiler chickens and shows no adverse effects on their growth, dressing percentage, and internal organs. GLC addition in diets improves the antioxidant activity and immune response in birds. GLC help enrich the breast muscle with n-3 and n-6 polyunsaturated fatty acids.

12.
Animals (Basel) ; 13(6)2023 Mar 07.
Article in English | MEDLINE | ID: mdl-36978513

ABSTRACT

This investigation explored the impact of dietary frankincense resin oil (FO) on growth performance parameters, intestinal histomorphology, fatty acid composition of the breast muscle, and the immune status of broilers. We allotted 400, three-day-old, male chicks (Ross 308 broiler) into four treatment groups (ten replicates/group; ten chicks/replicate). They were fed a basal diet with different concentrations of FO (0, 200, 400, and 600 mg kg-1). FO supplementation increased the overall body weight (BW) and body weight gain (BWG) by different amounts, linearly improving the feed conversion ratio with the in-supplementation level. Total feed intake (TFI) was not affected. Growth hormones and total serum protein levels also linearly increased with the FO level, while albumin was elevated in the FO600 group. Moreover, total globulins increased linearly in FO400 and FO600 treatment groups. Thyroxin hormone (T3 and T4) levels increased in all FO treatment groups without affecting glucose and leptin serum values. Different concentrations of FO supplementation in the diet increased the activities of Complement 3, lysozyme, and interleukin 10 levels in the serum. Dietary FO in broilers increased the total percentage of n-3 and n-6 fatty acids. It also increased the ratio of n-3 to n-6 linearly and quadratically. Additionally, FO supplementation led to the upregulation of immune clusters of differentiation 3 and 20 (CD3 and CD20) in the spleen, along with improving most of the morphometric measures of the small intestine. In conclusion, FO up to 600 mg kg-1 as a feed additive in broiler chicken production is valuable for promoting their growth, intestinal histomorphology, and immune status along with enriching breast muscle with polyunsaturated fatty acids (PUFA).

13.
Fish Shellfish Immunol ; 133: 108568, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36717065

ABSTRACT

The current study was designed to examine the impacts of dietary mannan-oligosaccharides (MOS) on growth, hemato-biochemical changes, digestive-antioxidant enzyme activity, immune response, and disease resistance of milkfish (Chanos chanos) fed diets contained MOS i.e. 1g, 2g, and 3g MOS. The growth parameters were significantly influence in milkfish fed all MOS diets, whereas the feed conversion ratio (FCR) and protein efficiency ratio (PER) were significantly influence with 2g or 3g MOS diets. The total protein (TP), globulin (GB), and glucose (GLU) levels, amylase, protease, liver enzymes were found significantly high in fish fed 2g or 3g MOS diets; but, lipase, trypsin, and alkaline phosphatase (ALP) enzymes were increased significantly at 3g MOS diet. All MOS inclusion levels were significantly increased total and Lactobacillus intestinal microflora population. The oxidative enzymes activity as superoxide desmutase (SOD) and catalyze (CAT) were progressively increased with all MOS supplementation diet, but the glutathione peroxidase (GPx) and lactate dehydrogenase (LDH) content were found significantly high in fish fed 2g or 3g MOS diets. Similarly, the reduced glutathione (GSH) and glutathione reductase (GR) contents were observed significantly high level in fish fed 3g MOS diet. The phagocytic (PC) and lysozyme (LYZ) activities were found gradually increase in fish fed increasing level of MOS diets, while the respiratory burst (RB) and malondialdehyde (MDA) activities were seen significant in fish fed 2g and 3g MOS diets. The current research work confirmed that C. chanos fed diets contained 3g kg-1 MOS recorded better growth performance, digestive-antioxidant, immune response, and disease resistance.


Subject(s)
Antioxidants , Mannans , Animals , Antioxidants/metabolism , Mannans/metabolism , Disease Resistance , Diet/veterinary , Fishes , Dietary Supplements , Oligosaccharides/metabolism , Animal Feed/analysis
14.
J Anim Physiol Anim Nutr (Berl) ; 107(3): 920-927, 2023 May.
Article in English | MEDLINE | ID: mdl-36245301

ABSTRACT

This study aimed to examine the impact of the Jerusalem Artichoke extract (JAEx) as a feed additive on the performance, blood biochemistry, antioxidant indices, immunity, and intestinal microbiota in growing Japanese quails. In total, 270 birds were randomly divided into three groups, with six replicates of 15 birds each. The first group was fed a control diet without JAEx. The second and third groups received the control diet plus 200 and 400 ppm JAEx, respectively. The groups fed the diet containing 200 and 400 ppm JAEx had the best body weight, body weight gain and feed conversion ratio, and faster growth rate with the best performance index, compared with the control group (p < 0.05). The control quails had a lower feed intake than the JAEx-treated quails. The groups fed JAEx 200 and 400 ppm had the lowest lipid profile, blood glucose, liver enzymes, Salmonella and Escherichia coli population and the highest antioxidant indices, immune responses and Lactobacilli population number compared to the control group (p < 0.05). In conclusion, the addition of JAEx at 400 ppm followed by 200 ppm improved the productive performance, antioxidant capacity, blood biochemical and immunological indices, and intestinal microbiota in growing Japanese quails.


Subject(s)
Coturnix , Helianthus , Animals , Coturnix/physiology , Antioxidants , Dietary Supplements , Quail , Diet/veterinary , Body Weight , Immunity , Animal Feed/analysis
15.
Animals (Basel) ; 12(22)2022 Nov 18.
Article in English | MEDLINE | ID: mdl-36428433

ABSTRACT

The present study evaluated the potential effects of dietary inclusion of spray-dried bovine hemoglobin powder (SDBH) on the growth, gene expression of peptide and amino acid transporters, insulin growth factor-1 (IGF-1) and myostatin, digestive enzymes activity, intestinal histomorphology and immune status, immune-related gene expression, and economic efficiency in Nile tilapia, Oreochromis niloticus. Two hundred twenty-five fingerlings (32.38 ± 0.05 g/fish) were distributed into five treatments with five dietary inclusion levels of SDBH: 0, 2.5, 5, 7.5, and 10% for a ten-week feeding period. Dietary inclusion of SDBH linearly increased the final body weight (FBW), total weight gain (TWG), specific growth rate (SGR), and protein efficiency ratio (PER). Additionally, a linear decrease in feed conversion ratio (FCR) and daily feed intake relative to the daily BW was reported in the highest inclusion levels (7.5 and 10%). Dietary inclusion of SDBH was associated with a significant increase in the intestinal villous height (VH), villous width (VW), villous height: crypt depth ratio (VH: CD), and muscle coat thickness (MCT), with the highest values reported in SDBH7.5 group. Increased serum growth hormone levels and decreased serum leptin hormone levels were also reported by increasing the SDBH level. The serum glucose level was decreased in the SDBH7.5 and SDBH10 groups. The digestive enzymes' activity (amylase and protease) was increased by increasing the SDBH inclusion level. An up-regulation in the expression of peptide and amino acid transporters, IGF-1, and down-regulation of myostatin was reported in the SDBH2.5 to SDBH7.5 groups. Spleen sections showed more lymphoid elements, especially in the SDBH2.5 and SDBH7.5 groups. The SDBH inclusion increased the serum lysozyme activity, nitric oxide (NO), and complement 3 (C3) levels, with the highest values recorded in the SDBH5 group. The phagocytic % and the phagocytic index were increased by increasing the SDBH inclusion %. The expressions of immune-related genes (transforming growth factor-beta (TGF-ß), Toll-like receptor 2 (TLR2), and interleukin 10 (IL10)) were up-regulated by SDBH inclusion with the highest expression in the SDBH5 group. Economically, the feed costs and feed costs/kg gain were linearly decreased in the SDBH7.5 and SDBH10 diets. In conclusion, spray-dried bovine hemoglobin powder could be used as a protein source for up to 10% of the diets of Nile tilapia for better growth and immune status of fish.

16.
Saudi J Biol Sci ; 29(1): 190-196, 2022 Jan.
Article in English | MEDLINE | ID: mdl-35002408

ABSTRACT

The influence of herbicides causes health and economic loss, which requires innovative solutions to sustain the aquaculture industry. In this regard, dietary isatis is included in Nile tilapia diets to relieve atrazine (ATZ)-induced growth retardation, hepato-renal dysfunction, and oxidative stress. The first and second groups offered the control diet (control), while the third and fourth groups offered the isatis supplemented diet (1%). Meantime, half of the water was replaced and mixed with ATZ (1.39 mg/L) in the second and fourth groups for 30 days. The group of fish delivered isatis had significantly enhanced FBW, WG, and SGR, while fish intoxicated with ATZ had meaningfully impaired growth behavior (p < 0.05). Further, the FCR was improved by isatis, and ATZ resulted in the worst FCR among the groups. Interestingly fish fed isatis and exposed with ATZ (88.89%) had a higher survival rate than fish exposed with ATZ without isatis feeding, and both are lower than the control (97.78%) (p < 0.05). The histological structure in the isatis-treated groups showed distinguished enhancement and branching of the intestinal villi. The intestine of ATZ-treated fish revealed damage and inflammatory cell infiltration in the intestinal mucosa with separation of lining epithelium. Generally, fish fed isatis and intoxicated with ATZ had lower uric acid, urea, creatinine, ALT, and AST and higher total protein, globulin, and albumin than fish exposed with ATZ without feeding with isatis (p < 0.05). Markedly, fish-fed isatis had the highest SOD, CAT, GPx, and the lowest MDA level compared to the other groups (p < 0.05). Meanwhile, fish exposed with ATZ had the worst SOD, CAT, GPx, and the highest MDA level compared to the other groups (p < 0.05). In summary, dietary isatis relieved ATZ induced growth retardation, hepato-renal dysfunction, and oxidative stress in Nile tilapia.

17.
Saudi J Biol Sci ; 28(12): 7241-7247, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34867027

ABSTRACT

Selenium (Se) is a multifunctional trace element required in specific amounts for the optimal growth of aquatic finfish species. For this reason, this study investigated the effect of Se nanoparticles on the growth behavior, antioxidative capacity, and liver wellbeing of Striped catfish (Pangasianodon hypophthalmus). Striped catfish fed varying Se nanoparticles levels (0. 0.5, 1, and 2 mg/kg) in triplicate units and kept for 60 days. Striped catfish delivered dietary Se nanoparticles had markedly increased growth performance, specific growth rate (SGR), consumed feed, and protein efficiency ratio but reduced feed conversion ratio (FCR). The whole body, liver, muscle, and gills have higher Se accumulation levels in fish that received Se nanoparticles than the control with the highest level in fish fed 2 mg/kg. The carcass composition showed higher protein content in fish fed 1 and 2 mg/kg (p = 0.001 and 0.001) and higher ash content (p = 0.001 and 0.002) in fish fed 2 mg/kg than the remaining groups. Superoxide dismutase was meaningfully activated in Striped catfish delivered 1 and 2 mg Se nanoparticles/kg compared with the control (p < 0.05). Also, catalase and glutathione peroxidase activities were higher, and malondialdehyde level was lower in Striped catfish fed Se nanoparticles at 0.5, 1, and 2 mg/kg than the control (p < 0.05). The villi exhibited a visible increase in both height and branching with an increased level of Se nanoparticles in addition to the increased number of goblet cells. The Se nanoparticles-treated fish revealed dose-dependent modifications fluctuated from diffuse fatty vacuolization in hepatocytes with eccentric pyknotic hepatocytes nuclei. In conclusion, Se nanoparticles are required for the optimum growth behavior, antioxidative capacity, and liver wellbeing of Striped catfish. Based on SGR and FCR data's regression analysis, Se nanoparticles are recommended at 1.02-1.11 mg/kg diet.

18.
Int J Mol Sci ; 22(13)2021 Jun 25.
Article in English | MEDLINE | ID: mdl-34202112

ABSTRACT

D-galactose (D-gal) administration causes oxidative disorder and is widely utilized in aging animal models. Therefore, we subcutaneously injected D-gal at 200 mg/kg BW dose to assess the potential preventive effect of thymoquinone (TQ) and curcumin (Cur) against the oxidative alterations induced by D-gal. Other than the control, vehicle, and D-gal groups, the TQ and Cur treated groups were orally supplemented at 20 mg/kg BW of each alone or combined. TQ and Cur effectively suppressed the oxidative alterations induced by D-gal in brain and heart tissues. The TQ and Cur combination significantly decreased the elevated necrosis in the brain and heart by D-gal. It significantly reduced brain caspase 3, calbindin, and calcium-binding adapter molecule 1 (IBA1), heart caspase 3, and BCL2. Expression of mRNA of the brain and heart TP53, p21, Bax, and CASP-3 were significantly downregulated in the TQ and Cur combination group along with upregulation of BCL2 in comparison with the D-gal group. Data suggested that the TQ and Cur combination is a promising approach in aging prevention.


Subject(s)
Benzoquinones/pharmacology , Brain/drug effects , Brain/metabolism , Curcumin/pharmacology , Galactose/pharmacology , Myocardium/metabolism , Oxidation-Reduction/drug effects , Oxidative Stress/drug effects , Animals , Benzoquinones/chemistry , Curcumin/chemistry , Immunohistochemistry , Liver/drug effects , Liver/metabolism , Liver/pathology , Organ Specificity , Rats , Structure-Activity Relationship
19.
Animals (Basel) ; 11(5)2021 May 18.
Article in English | MEDLINE | ID: mdl-34069982

ABSTRACT

Waterborne herbicides are stressful agents that threaten the productivity and safety of finfish species. In this study, the toxicity impacts of atrazine (ATZ) and the protective role of fucoidan were investigated on the health performance of Nile tilapia. For 40 days, the total number of 180 Nile tilapia was assigned in four groups (triplicates, 15 fish/replicate), where the first (control) and third groups were offered the control diet, while the second and fourth groups were offered a fucoidan (FCN). Further, in the third and fourth groups, the water was mixed with atrazine (ATZ) at 1.39 mg/L daily. The growth rate, FCR, and survival rate were markedly enhanced by fucoidan but severely declined by ATZ exposure (p < 0.05). The morphological structure of the intestine in the control fish revealed normal structure, while fucoidan-treated groups showed eminent enhancement and branching of the intestinal villi. The intestine of ATZ-treated fish revealed deterioration and the intestinal mucosa, inflammatory cell infiltration, and separation of lining epithelium. The highest Hb, PCV, RBCs, WBCs, total protein, and albumin were observed in Nile tilapia fed fucoidan, but the worst values were seen in ATZ-intoxicated fish (p < 0.05). The liver-related enzymes (ALT and AST) and kidney function (urea and creatinine) showed impaired values by ATZ toxicity and were regulated by dietary fucoidan. Meanwhile, fish fed fucoidan and exposed to ATZ had lower total cholesterol and triglyceride values than fish exposed to ATZ without fucoidan feeding (p < 0.05). The SOD, CAT, GPx, cortisol, and glucose levels were increased in ATZ-exposed fish and reduced by fucoidan (p < 0.05). However, the level of malondialdehyde (MDA) was reduced in fucoidan-fed fish and increased in ATZ-exposed fish (p < 0.05). Altogether, dietary fucoidan is required in fish diets to alleviate the impacts of ATZ-induced toxicity.

20.
Saudi J Biol Sci ; 28(3): 1860-1866, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33732073

ABSTRACT

The study evaluated the nutritional quality and investigated the heavy metals concentration in muscle tissues of five commercially important marine fish species, including brownspotted grouper (Epinephelus chlorostigma), squaretail coralgrouper (Plectropomus areolatus), black pomfret (Parastromateus niger), goldbanded jobfish (Pristipomoides multidens), and blueskin seabream (Polysteganus coeruleopunctatus) from the Red Sea, Jeddah Coast, Saudi Arabia. Significant differences (p < 0.05) were observed in the proximate chemical composition of fish muscles in these species. The highest protein content (17.66 ± 0.58%) was achieved in blueskin seabream while the lowest (15.28 ± 0.46%) was observed in brownspotted grouper. The highest lipid content (2.97 ± 0.45%) was recorded in squaretail coralgrouper while the lowest (1.52 ± 0.26%) was observed in blueskin seabream. Heavy metal concentrations varied significantly within and between fish species under study (p < 0.05). Significant differences in the concentration of heavy metals among fish species were recorded. Results revealed that the bioaccumulation of Cr, Fe, Ni, and Cd in muscles of fish species under study was higher than the standard concentration, but that of Mn, Cu, and Pb were less than the standard concentration recommended in the EU, FAO, and WHO guidelines. In conclusion, these fish species represent a high-quality food source but is unsafe due to the level of certain minerals in their tissues. Results also indicated that the Red Sea environment is contaminated with heavy metals, which was reflected in the tissues of fishes used in this study.

SELECTION OF CITATIONS
SEARCH DETAIL
...