Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Water Sci Technol ; 90(1): 363-372, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39007324

ABSTRACT

There has been numerous research on the uses of treated wastewater that needs chlorine disinfection, but none have looked at the impacts of injecting nanobubbles (NBs) on the decomposition of residual chlorine. Gas NB injection in treated wastewater improves its properties. The kinetics of disinfectant decay could be impacted by changes in treated wastewater properties. This paper studies the effect of various NB injections on the residual chlorine decay of secondary treated wastewater (STWW). It also outlines the empirical equations that were developed to represent these impacts. The results show that each type of NBs in treated wastewater had a distinct initial chlorine concentration. The outcomes demonstrated a clear impact on the decrease of the needed chlorine quantity and the reduction of chlorine decay rate when utilizing NB injection for the STWW. As a result, the residual chlorine will remain for a longer time and will resist any microbiological growth under the application of NBs on treated wastewater. Moreover, NBs in secondary treated effluent reduce chlorine usage, lowering wastewater disinfection costs.


Subject(s)
Chlorine , Wastewater , Chlorine/chemistry , Wastewater/chemistry , Waste Disposal, Fluid/methods , Disinfection/methods , Water Purification/methods , Disinfectants/chemistry , Disinfectants/pharmacology
2.
Polymers (Basel) ; 13(3)2021 Jan 29.
Article in English | MEDLINE | ID: mdl-33573019

ABSTRACT

Utilizing polymers for asphalt concrete (AC) mixture modification has many drawbacks that hinder its wide implementations for roadway construction. Recently, research on employing complementary materials, such as nanomaterials, to balance negative impacts of polymers while enhancing the AC mixture's performance has received great attention. This study aimed to investigate the effect of incorporating nanoclay (NC) particles on the performance of a high-density polyethylene (HDPE)-modified AC mixture. A 60/70 asphalt binder was first modified with HDPE, and then NC particles were gradually added at a concentration of 1-4% by weight of the asphalt binder. The binders' physical characteristics, storage stability, and chemical change were scrutinized. AC mixture performance, including pseudo-stiffness, moisture damage resistance, stripping susceptibility, and rutting tendency, was investigated. A statistical analysis on the experimental results was conducted using Kruskal-Wallis and Dunn tests. Test results showed that employing NC/HDPE significantly increased penetration index and thereby enhanced binder temperature sensitivity. Moreover, it prevented oxidation action and separation and, therefore, enhanced binder storage stability. Furthermore, incorporating NC amplified pseudo-stiffness and significantly improved resistance against moisture damage and stripping of HDPE-modified mixtures. Moreover, it improved both elastic (recoverable) and plastic (unrecoverable) deformations of mixtures. The most satisfactory results were attained when incorporating 3% of NC.

SELECTION OF CITATIONS
SEARCH DETAIL
...