Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Front Plant Sci ; 8: 219, 2017.
Article in English | MEDLINE | ID: mdl-28348569

ABSTRACT

Sweet potato [Ipomoea batatas (L) Lam] yields currently stand at 4.5 t ha-1 on smallholder farms in Uganda, despite the attainable yield (45-48 t ha-1) of NASPOT 11 cultivar comparable to the potential yield (45 t ha-1) in sub-Saharan Africa (SSA). On-farm field experiments were conducted for two seasons in the Mt Elgon High Farmlands and Lake Victoria Crescent agro-ecological zones in Uganda to determine the potential of biofertilizers, specifically arbuscular mycorrhizal fungi (AMF), to increase sweet potato yields (NASPOT 11 cultivar). Two kinds of biofertilizers were compared to different rates of phosphorus (P) fertilizer when applied with or without nitrogen (N) and potassium (K). The sweet potato response to treatments was variable across sites (soil types) and seasons, and significant tuber yield increase (p < 0.05) was promoted by biofertilizer and NPK treatments during the short-rain season in the Ferralsol. Tuber yields ranged from 12.8 to 20.1 t ha-1 in the Rhodic Nitisol (sandy-clay) compared to 7.6 to 14.9 t ha-1 in the Ferralsol (sandy-loam) during the same season. Root colonization was greater in the short-rain season compared to the long-rain season. Biofertilizers combined with N and K realized higher biomass and tuber yield than biofertilizers alone during the short-rain season indicating the need for starter nutrients for hyphal growth and root colonization of AMF. In this study, N0.25PK (34.6 t ha-1) and N0.5PK (32.9 t ha-1) resulted in the highest yield during the long and the short-rain season, respectively, but there was still a yield gap of 11.9 and 13.6 t ha-1 for the cultivar. Therefore, a combination of 90 kg N ha-1 and 100 kg K ha-1 with either 15 or 30 kg P ha-1 can increase sweet potato yield from 4.5 to >30 t ha-1. The results also show that to realize significance of AMF in nutrient depleted soils, starter nutrients should be included.

2.
Front Plant Sci ; 7: 1770, 2016.
Article in English | MEDLINE | ID: mdl-27965683

ABSTRACT

This study evaluated the symbiotic effectiveness and economic evaluation of Rhizobium inoculants with the objective of recommending the most effective inoculant strain for soybean and cowpea production in Northern Ghana. Field experiments were established in three locations using randomized complete block design with five blocks. A total of four treatments (Legumefix, Biofix, 100 kg N ha-1 and uninoculated control for soybean and BR 3267, BR 3262, 100 kg N ha-1 and uninoculated control for cowpea) were applied. At Nyankpala, inoculation of soybean with Legumefix and Biofix led to significant (P < 0.05) increases in nodule number (90-118%), nodule dry weight (>two-folds), and grain yield (12-19%) relative to the control. The Biofix effect on soybean grain yield was 1.5-fold of Legumefix. Similarly, inoculation of cowpea with BR 3262 and BR 3267 significantly (P < 0.05) increased nodule number (41-68%), nodule dry weight (45-65%), and grain yield (11-38%) relative to the control. Strain BR 3267 performed consistently (>two-folds) better than BR 3262 on grain yield. At Nyagli, there was no significant effect of inoculation on cowpea. Wilks lambda values (0.067, 0.039; P = 0.00) indicated that 93.3 and 96.1% of the variations observed in soybean and cowpea, respectively, were due to the applied inoculants. Biofix and BR 3267 were economically profitable with VCR ratio of 8.7 and 4.6, respectively. Based on grain yield and economic returns observed, Biofix and BR 3267 can be recommended in Nyankpala for inoculation of soybean and cowpea, respectively.

3.
Environ Technol ; 34(9-12): 1341-7, 2013.
Article in English | MEDLINE | ID: mdl-24191466

ABSTRACT

The operation of onsite septic effluent disposal without considering seasonal moisture changes in drain field conditions can be a major cause of the failure of conventional septic systems. This study addressed this issue from a soil hydraulic perspective by using real-time drain field soil moisture levels to limit septic effluent disposal in a vertisol via subsurface drip irrigation. A prototype system was field-tested in a Houston clay soil and results describe the subsequent impact on selected soil chemical properties. After one year of hydraulic dosing with a synthetic wastewater, soil total carbon and nitrogen concentrations increased, but no increase in soil total phosphorus concentration was observed. Soil NO3-N leaching potential was noted, but soil NH4-N concentrations decreased, which could be ascribed to NH4-N nitrification, fixation within clay sheets and NH3 volatilization. Soil K+, Mg2+ and Na+ concentrations increased in soil layers above the drip lines, but decreased in soil layers below drip lines. Soil electrical conductivity accordingly increased in soil layers above drip lines, but the range was significantly lower than the threshold for soil salinity. Although the moisture-controlled effluent disposal strategy successfully avoided hydraulic dosing during unfavourable wet drain field conditions and prevented accumulation of soil salts in the soil profile beneath the drip lines, soil salts tended to accumulate in top soil layers. These adverse effects warrant system corrections before large-scale implementation of subsurface drip irrigation of effluent in similar vertisols.


Subject(s)
Sewage/chemistry , Soil/chemistry , Waste Disposal, Fluid/instrumentation , Waste Disposal, Fluid/methods , Aluminum Silicates/chemistry , Ammonium Compounds/chemistry , Clay , Electric Conductivity , Electrolytes/chemistry , Hydrogen-Ion Concentration , Nitrites/chemistry , Nitrogen/chemistry , Phosphorus/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...