Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Biochem Soc Trans ; 50(2): 867-876, 2022 04 29.
Article in English | MEDLINE | ID: mdl-35356968

ABSTRACT

Biobutanol is gaining much attention as a potential biofuel due to its superior properties over ethanol. Butanol has been naturally produced via acetone-butanol-ethanol (ABE) fermentation by many Clostridium species, which are not very user-friendly bacteria. Therefore, to improve butanol titers and yield, various butanol synthesis pathways have been engineered in Escherichia coli, a much more robust and convenient host than Clostridium species. This review mainly focuses on the biosynthesis of n-butanol in engineered E. coli with an emphasis on efficient enzymes for butanol production in E. coli, butanol competing pathways, and genome engineering of E. coli for butanol production. In addition, the use of alternate strategies for butanol biosynthesis/enhancement, alternate substrates for the low cost of butanol production, and genetic improvement for butanol tolerance in E. coli have also been discussed.


Subject(s)
1-Butanol , Butanols , 1-Butanol/metabolism , Butanols/metabolism , Clostridium/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Ethanol/metabolism , Fermentation , Metabolic Engineering
2.
Biotechnol Rep (Amst) ; 32: e00692, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34917492

ABSTRACT

Construction of plasmids is crucial for expression of functional proteins of diverse physiological impact in E. coli. Here, we first designed and constructed a novel pair of bacterial expression vectors, i.e., pAS01 and pAS02, to be co-transformed with pQE30 for the co-expression of three target genes. The three plasmids contain ColE1, p15A and pSC101 origin of replication for high, medium and low copy plasmids, respectively, and same promoter (T5) and RBS. We then cloned genes encoding three reporter proteins (GFPuv, TurboRFP, and EYFP) in each of these plasmids and co-expressed in E. coli in six different combinations. Each of these reporter proteins exhibited diverse impact on growth, plasmid copy number and stability, and expression of other reporter proteins. Our results indicate that GFP and RFP were the most and the least favorable proteins for the cells, respectively, in terms of these parameters, especially on impacting expression of other co-expressed proteins.

3.
ACS Synth Biol ; 9(9): 2390-2398, 2020 09 18.
Article in English | MEDLINE | ID: mdl-32813973

ABSTRACT

n-Butanol is often considered a potential substitute for gasoline due to its physicochemical properties being closely related to those of gasoline. In this study, we extend our earlier work to convert endogenously producing butyrate via the FASII pathway using thioesterase TesBT to its corresponding alcohol, i.e., butanol. We first assembled pathway genes, i.e., car encoding carboxylic acid reductase from Mycobacterium marinum, sfp encoding phosphopantetheinyl transferase from Bacillus subtilis, and adh2 encoding alcohol dehydrogenase from S. cerevisiae, responsible for bioconversion of butyrate to butanol in three different configurations (Operon, Pseudo-Operon, and Monocistronic) to achieve optimum expression of each gene and compared with the clostridial solventogenic pathway for in vivo conversion of butyrate to butanol under aerobic conditions. An E. coli strain harboring car, sfp, and adh2 in pseudo-operon configuration was able to convert butyrate to butanol with 100% bioconversion efficiency when supplemented with 1 g/L of butyrate. Further, co-cultivation of an upstream strain (butyrate-producing) with a downstream strain (butyrate to butanol converting) at different inoculation ratios was investigated, and an optimized ratio of 1:4 (upstream strain: downstream strain) was found to produce ∼2 g/L butanol under fed-batch fermentation. Further, a mono-cultivation approach was applied by transforming a plasmid harboring tesBT gene into the downstream strain. This approach produced 0.42 g/L in a test tube and ∼2.9 g/L butanol under fed-batch fermentation. This is the first report where both mono- and co-cultivation approaches were tested and compared for butanol production, and butanol titers achieved using both strategies are the highest reported values in recombinant E. coli utilizing FASII pathway.


Subject(s)
1-Butanol/metabolism , Biosynthetic Pathways/genetics , Escherichia coli/chemistry , Metabolic Engineering/methods , 1-Butanol/chemistry , Alcohol Dehydrogenase/genetics , Bacterial Proteins/genetics , Batch Cell Culture Techniques , Butyric Acid/chemistry , Butyric Acid/metabolism , Escherichia coli/metabolism , Fatty Acids/biosynthesis , Fungal Proteins/genetics , Oxidoreductases/genetics , Plasmids/genetics , Plasmids/metabolism , Transferases (Other Substituted Phosphate Groups)/genetics
4.
J Ind Microbiol Biotechnol ; 46(7): 965-975, 2019 Jul.
Article in English | MEDLINE | ID: mdl-30982114

ABSTRACT

Butanol production from agricultural residues is the most promising alternative for fossil fuels. To reach the economic viability of biobutanol production, both glucose and xylose should be utilized and converted into butanol. Here, we engineered a dual-operon-based synthetic pathway in the genome of E. coli MG1655 to produce n-butanol using CRISPR/Cas9 technology. Further deletion of competing pathway followed by fed-batch cultivation of the engineered strain in a bioreactor with glucose-containing complex medium yielded 5.4 g/L n-butanol along with pyruvate as major co-product, indicating a redox imbalance. To ferment xylose into butanol in redox-balanced manner, we selected SSK42, an ethanologenic E. coli strain engineered and evolved in our laboratory to produce ethanol from xylose, for integrating synthetic butanol cassette in its genome via CRISPR/Cas9 after deleting the gene responsible for endogenous ethanol production. The engineered plasmid- and marker-free strain, ASA02, produced 4.32 g/L butanol in fed-batch fermentation in completely defined AM1-xylose medium.


Subject(s)
1-Butanol/metabolism , Escherichia coli/metabolism , Xylose/metabolism , Bioreactors , CRISPR-Cas Systems , Escherichia coli/genetics , Ethanol/metabolism , Fermentation , Glucose/metabolism , Metabolic Engineering , Operon , Plasmids
SELECTION OF CITATIONS
SEARCH DETAIL
...