Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Biomedicines ; 11(7)2023 Jul 24.
Article in English | MEDLINE | ID: mdl-37509712

ABSTRACT

Anti-cancer therapy by iron chelation has been shown to inhibit many cellular processes including DNA replication, mitochondrial metabolism and oncogenic signalling pathways (e.g., EGFR). Iron chelator SK4 represents a double pronged approach towards treating cancer. SK4 enters through LAT1, a commonly overexpressed amino acid transporter in tumours, thus targeting iron addiction and LAT1 overexpression. The aim of this study was to characterise the mode of action of SK4 through proteomics, metabolomics, lipidomics and seahorse real-time analysis in ovarian cell line SKOV3 and triple negative breast cancer cell line MDA MB 231. Pathway enrichment of proteomics data showed an overrepresentation of metabolism related pathways. Metabolic change after SK4 exposure have been confirmed in investigations of changes in basal and maximal mitochondrial respiration using seahorse real-time analysis of mitochondrial metabolism. Metabolomics also showed an increase in AMP and glucose-1-phosphate. Interestingly, our lipidomics data show a decrease in phospholipid synthesis in the SKOV3 cells which is in contrast with previous data which showed an upregulation of ceramide driven apoptosis. In summary, our data highlight impairment of energy metabolism as a mechanism of action underlying SK4 apoptosis, but also suggest a potential role of ceramide induction in the phenotypic outcome of the cell model.

2.
Noncoding RNA ; 8(6)2022 Dec 08.
Article in English | MEDLINE | ID: mdl-36548182

ABSTRACT

LncRNAs are involved in regulatory processes in the human genome, including gene expression. The rs35705950 SNP, previously associated with IPF, overlaps with the recently annotated lncRNA AC061979.1, a 1712 nucleotide transcript located within the MUC5B promoter at chromosome 11p15.5. To document the expression pattern of the transcript, we processed 3.9 TBases of publicly available RNA-SEQ data across 27 independent studies involving lung airway epithelial cells. Epithelial lung cells showed expression of this putative pancRNA. The findings were independently validated in cell lines and primary cells. The rs35705950 is found within a conserved region (from fish to primates) within the expressed sequence indicating functional importance. These results implicate the rs35705950-containing AC061979.1 pancRNA as a novel component of the MUC5B expression control minicircuitry.

3.
Front Mol Biosci ; 9: 1005092, 2022.
Article in English | MEDLINE | ID: mdl-36213122

ABSTRACT

Iron is an essential micronutrient due to its involvement in many cellular processes including DNA replication and OXPHOS. Tumors overexpress iron metabolism linked proteins which allow for iron accumulation driving high levels of proliferation. Our group has designed novel iron chelator SK4 which targets cancer's "iron addiction." SK4 comprises of two key moieties: an iron chelation moiety responsible for cytotoxicity and an amino acid moiety which allows entry through amino acid transporter LAT1. We selected LAT1 as a route of entry as it is commonly overexpressed in malignant tumors. SK4 has previously demonstrated promising results in an in vitro model for melanoma. We hypothesized SK4 would be effective against a range of tumor types. We have screened a panel of tumor-derived cell lines from different origins including breast, prostate, ovarian and cervical cancer for SK4 sensitivity and we have found a range of differential sensitivities varying from 111.3 to >500 µM. We validated the iron chelation moiety as responsible for inducing cytotoxicity through control compounds; each lacking a key moiety. Following the screen, we conducted a series of assays to elucidate the mechanism of action behind SK4 cytotoxicity. SK4 was shown to induce apoptosis in triple negative breast cancer cell line MDA MB 231 but not ovarian cancer cell line SKOV3 suggesting SK4 may induce different modes of cell death in each cell line. As MDA MB 231 cells harbor a mutation in p53, we conclude SK4 is capable of inducing apoptosis in a p53-independent manner. SK4 upregulated NDRG1 expression in MDA MB 231 and SKOV3 cells. Interestingly, knockdown of NDRG1 antagonized SK4 in MDA MB 231 cells but not SKOV3 cells suggesting SK4's mechanism of action may be mediated through NDRG1 in MDA MB 231 cells. In conclusion, we have shown tagging iron chelators with an amino acid moiety to allow entry through the LAT1 transporter represents a double pronged approach to cancer therapy, targeting "iron addiction" and amino acid metabolism dysregulation.

4.
Oncotarget ; 12(2): 106-124, 2021 Jan 19.
Article in English | MEDLINE | ID: mdl-33520115

ABSTRACT

Cancer cells accumulate iron to supplement their aberrant growth and metabolism. Depleting cells of iron by iron chelators has been shown to be selectively cytotoxic to cancer cells in vitro and in vivo. Iron chelators are effective at combating a range of cancers including those which are difficult to treat such as androgen insensitive prostate cancer and cancer stem cells. This review will evaluate the impact of iron chelation on cancer cell survival and the underlying mechanisms of action. A plethora of studies have shown iron chelators can reverse some of the major hallmarks and enabling characteristics of cancer. Iron chelators inhibit signalling pathways that drive proliferation, migration and metastasis as well as return tumour suppressive signalling. In addition to this, iron chelators stimulate apoptotic and ER stress signalling pathways inducing cell death even in cells lacking a functional p53 gene. Iron chelators can sensitise cancer cells to PARP inhibitors through mimicking BRCAness; a feature of cancers trademark genomic instability. Iron chelators target cancer cell metabolism, attenuating oxidative phosphorylation and glycolysis. Moreover, iron chelators may reverse the major characteristics of oncogenic transformation. Iron chelation therefore represent a promising selective mode of cancer therapy.

SELECTION OF CITATIONS
SEARCH DETAIL
...