Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 15(12)2022 Jun 08.
Article in English | MEDLINE | ID: mdl-35744133

ABSTRACT

The additive manufacturing (AM) of innovative lattice structures with unique mechanical properties has received widespread attention due to the capability of AM processes to fabricate freeform and intricate structures. The most common way to characterize the additively manufactured lattice structures is via the uniaxial compression test. However, although there are many applications for which lattice structures are designed for bending (e.g., sandwich panels cores and some medical implants), limited attention has been paid toward investigating the flexural behavior of metallic AM lattice structures with tunable internal architectures. The purpose of this study was to experimentally investigate the flexural behavior of AM Ti-6Al-4V lattice structures with graded density and hybrid Poisson's ratio (PR). Four configurations of lattice structure beams with positive, negative, hybrid PR, and a novel hybrid PR with graded density were manufactured via the laser powder bed fusion (LPBF) AM process and tested under four-point bending. The manufacturability, microstructure, micro-hardness, and flexural properties of the lattices were evaluated. During the bending tests, different failure mechanisms were observed, which were highly dependent on the type of lattice geometry. The best response in terms of absorbed energy was obtained for the functionally graded hybrid PR (FGHPR) structure. Both the FGHPR and hybrid PR (HPR) structured showed a 78.7% and 62.9% increase in the absorbed energy, respectively, compared to the positive PR (PPR) structure. This highlights the great potential for FGHPR lattices to be used in protective devices, load-bearing medical implants, and energy-absorbing applications.

2.
Materials (Basel) ; 13(18)2020 Sep 08.
Article in English | MEDLINE | ID: mdl-32911629

ABSTRACT

Erosion and erosion-corrosion tests of as-built Ti-6Al-4V manufactured by Selective Laser Melting were investigated using slurries composed of SiO2 sand particles and either tap water (pure water) or 3.5% NaCl solution (artificial seawater). The microhardness value of selective laser melting (SLM)ed Ti-6Al-4V alloy increased as the impact angle increased. The synergistic effect of corrosion and erosion in seawater is always higher than erosion in pure water at all impact angles. The seawater environment caused the dissolution of vanadium oxide V2O5 on the surface of SLMed Ti-6Al-4V alloy due to the presence of Cl- ions in the seawater. These findings show lower microhardness values and high mass losses under the erosion-corrosion test compared to those under the erosion test at all impact angles.

3.
Polymers (Basel) ; 13(1)2020 Dec 30.
Article in English | MEDLINE | ID: mdl-33396782

ABSTRACT

In this research, the effect of water-silica slurry impacts on polylactic acid (PLA) processed by fused deposition modeling (FDM) is examined under different conditions with the assistance of an adaptive neuro-fuzzy interference system (ANFIS). Building orientation, layer thickness, and slurry impact angle are considered as the controllable variables. Weight gain resulting from water, net weight gain, and total weight gain are the predicting variables. Results uncover the accomplishment of the ANFIS model to appropriately appraise slurry erosion in correlation with comparing real data. Both experimental and ANFIS results are almost identical with average percentage error less than 5.45 × 10-6. We observed during the slurry impacts tests that all specimens showed an increase in their weights. This weight gain was finally interpreted to the synergetic effect of water absorption and the solid particles fragmentations immersed within the specimens due to the successive slurry impacts.

4.
Int J Artif Organs ; 42(11): 645-657, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31126192

ABSTRACT

The production of customized prostheses for the foot and ankle still relies on slow and laborious steps of the traditional plaster molding fabrication techniques. Additive manufacturing techniques where three-dimensional objects can be constructed directly based on the object's computer-aided-design data in a layerwise manner has opened the door to new opportunities for manufacturing of novel and personalized medical devices. The purpose of the present study was to develop a new methodology for design and manufacturing of a customized silicone partial foot prosthesis via an indirect additive manufacturing process. Furthermore, the biomechanics of gait of a subject with partial foot amputation wearing the custom silicone foot prosthesis manufactured by the indirect additive manufacturing was characterized, in comparison with a matched healthy participant. This study has confirmed the possibility of producing silicone partial foot prosthesis by indirect additive manufacturing procedure. The amputated subject reported total comfort using the custom prosthesis during walking, as well as cosmetic advantages. The prosthesis restored the foot geometry and normalized many of gait characteristics. The findings presented here contribute to introduce a proper understanding of biomechanics of walking after wearing silicone partial foot prosthesis and are useful for prosthetists and rehabilitation therapists when treating patients after partial foot amputation.


Subject(s)
Artificial Limbs , Foot , Prosthesis Design , Silicones , Adult , Amputees , Biomechanical Phenomena , Computer-Aided Design , Gait , Humans , Male , Walking
5.
Int J Artif Organs ; 42(6): 271-290, 2019 Jun.
Article in English | MEDLINE | ID: mdl-30537876

ABSTRACT

INTRODUCTION: There are several commercially available hip implant systems. However, for some cases, custom implant designed based on patient-specific anatomy can offer the patient the best available implant solution. Currently, there is a growing trend toward personalization of medical implants involving additive manufacturing into orthopedic medical implants' manufacturing. METHODS: This article introduces a systematic design methodology of femoral stem prosthesis based on patient's computer tomography data. Finite element analysis is used to evaluate and compare the micromotion and stress distribution of the customized femoral component and a conventional stem. RESULTS: The proposed customized femoral stem achieved close geometrical fit and fill between femoral canal and stem surfaces. The customized stem demonstrated lower micromotion (peak: 21 µm) than conventional stem (peak: 34 µm). Stress results indicate up to 89% increase in load transfer by conventional stem than custom stem because the higher stiffness of patient-specific femoral stem proximally increases the custom stem shielding in Gruen's zone 7. Moreover, patient-specific femoral stem transfers the load widely in metaphyseal region. CONCLUSION: The customized femoral stem presented satisfactory results related to primary stability, but compromising proximo-medial load transfer due to increased stem cross-sectional area increased stem stiffness.


Subject(s)
Arthroplasty, Replacement, Hip/instrumentation , Hip Prosthesis , Arthroplasty, Replacement, Hip/methods , Femur/surgery , Finite Element Analysis , Hip Prosthesis/classification , Hip Prosthesis/standards , Humans , Prosthesis Design , Stress, Mechanical
SELECTION OF CITATIONS
SEARCH DETAIL
...