Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Vet Med Int ; 2022: 3647523, 2022.
Article in English | MEDLINE | ID: mdl-35251587

ABSTRACT

Multidrug resistance poses a global threat to the poultry industry and public health, so the direction towards eliminating the use of antibiotics and finding alternatives is a vital step to solve this problem. Thyme microemulsion (10% oil/water) had nanodrop size 28.65 ± 0.89 nm, with a polydispersity index (PDI) of 0.28 with greater homogeneity. It showed IC50 > 100 ug/ml on cytotoxicity assay and 14 active components by GC-Mass. The study was carried out using 210 Cobb chicks divided into fourteen groups. The infected groups were challenged using two Salmonella Enteritidis multidrug resistance (MDR) and Salmonella Enteritidis sensitive strains to the sulpha-trimethoprim antibiotic. The challenged inoculum was 1 × 109 CFU of Salmonella Enteritidis by oral route. The MIC treatments doses were 1 ml/liter water for thyme oil and thyme microemulsion and 33.34 mg/kg b.wt sulfadiazine for 5 days. The results showed that both thymol oil (0.1%) and microemulsion (0.01%) are able to decrease the count of Salmonella Enteritidis in cecal content and fecal dropping and the mortality rates after five days of treatment. In addition, thyme oil and microemulsion had no pathological alteration on chickens' tissues that were collected two weeks after giving the treatment. By the robust HPLC method, the SDZ and TMP residues in tissues of infected groups treated with Cotrimazine® + thyme oil microemulsion had a slight significant economic impact (P < 0.05) compared to Cotrimazine® alone. In conclusion, thymol oil and microemulsion could be an alternative economic choice for multidrug resistance Salmonella Enteritidis treatment in poultry farms.

2.
Vet Med Int ; 2021: 6739220, 2021.
Article in English | MEDLINE | ID: mdl-34540194

ABSTRACT

The current situation of antibiotic resistance of most bacterial pathogens was a threat to the poultry and public health with increasing economic losses. Regarding this problem, monitoring of the circulating microorganisms occurred with the antibiotic resistance profile. A total of 657 different samples from internal organs (liver, heart, lung, and yolk) and paper-lining chick boxes were collected from native chicken farms which were submitted to the Reference Laboratory for Veterinary Quality Control on Poultry Production in the period from 2014 to 2018 for the detection of Salmonella, Escherichia coli (E. coli), and Staphylococcus. The bacterial isolates were tested for their antimicrobial susceptibility by disk diffusion technique. Salmonella was isolated from 128 out of 657 (19.5%), E. coli was isolated from 496 out of 657 (75.5%), and Staphylococcus species was isolated from 497 out of 657 (75.6%). All Salmonella positive samples were examined for antibiotic resistance against 10 different antibiotics, and the highest percentage all over the five years was against penicillin, ampicillin, and tetracycline. All E. coli positive samples were examined for antibiotic resistance against 14 different antibiotics, and the highest percentage all over the five years was with ampicillin, tetracycline, norfloxacin, streptomycin, and danofloxacin. All Staphylococcus positive sample species were examined for antibiotic resistance against 14 different antibiotics, and the highest percentage of resistance all over the five years was shown with tetracycline, streptomycin, ampicillin, and nalidixic acid.

SELECTION OF CITATIONS
SEARCH DETAIL
...