Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Pharm ; 586: 119620, 2020 Aug 30.
Article in English | MEDLINE | ID: mdl-32652179

ABSTRACT

Skin damage exposes the underlying layers to bacterial invasion, leading to skin and soft tissue infections. Several pathogens have developed resistance against conventional topical antimicrobial treatments and rendered them less effective. Recently, several nanomedical strategies have emerged as a potential approach to improve therapeutic outcomes of treating bacterial skin infections. In the current study, nanofibers were utilized for topical delivery of the antimicrobial drug vancomycin and evaluated as a promising tool for treatment of topical skin infections. Vancomycin-loaded nanofibers were prepared via electrospinning technique, and vancomycin-loaded nanofibers of the optimal composition exhibited nanosized uniform smooth fibers (ca. 200 nm diameter), high drug entrapment efficiency and sustained drug release patterns over 48 h. In vitro cytotoxicity assays, using several cell lines, revealed the biocompatibility of the drug-loaded nanofibers. In vitro antibacterial studies showed sustained antibacterial activity of the vancomycin-loaded nanofibers against methicillin-resistant Staphylococcus aureus (MRSA), in comparison to the free drug. The nanofibers were then tested in animal model of superficial MRSA skin infection and demonstrated a superior antibacterial efficiency, as compared to animals treated with the free vancomycin solution. Hence, nanofibers might provide an efficient nanodevice to overcome MRSA-induced skin infections and a promising topical delivery vehicle for antimicrobial drugs.


Subject(s)
Methicillin-Resistant Staphylococcus aureus , Nanofibers , Staphylococcal Infections , Animals , Anti-Bacterial Agents/therapeutic use , Drug Liberation , Microbial Sensitivity Tests , Staphylococcal Infections/drug therapy , Vancomycin
2.
J Hazard Mater ; 246-247: 26-33, 2013 Feb 15.
Article in English | MEDLINE | ID: mdl-23280051

ABSTRACT

The destruction of naphthalene, as representative polycyclic aromatic hydrocarbons, by surface dielectric barrier discharge is investigated in air as well as dry and humidified nitrogen at ambient temperature. Naphthalene destruction efficiency is evaluated in terms of chemical change vis-a-vis energy utilization. The detected byproducts are qualitatively evaluated in order to understand the role of the active species in the destruction process. The results show that the destruction efficiency and the energy efficiency are higher in the dry nitrogen than in the humidified nitrogen, and these decrease with the increase of the humidity. Measured concentration of ozone as a byproduct qualitatively indicates the roles of oxygen and ozone in the destruction process in air. The analysis of the aerosol particles formed during the destruction process, both in the dry and humidified nitrogen, confirmed the adverse effects of the humidity on the byproducts formation and subsequently on the destruction process.


Subject(s)
Air Pollutants/chemistry , Naphthalenes/chemistry , Nitrogen/chemistry , Reactive Nitrogen Species/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...