Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Enzyme Inhib Med Chem ; 39(1): 2311818, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38488131

ABSTRACT

In this article, a new series of 2-((3,5-disubstituted-2-thioxo-imidazol-1-yl)imino)acenaphthylen-1(2H)-ones were synthesized. Imidazole-2-thione with acenaphthylen-one gave a hybrid scaffold that integrated key structural elements essential for DNA damage via direct DNA intercalation and inhibition of the topoisomerase II enzyme. All the synthesized compounds were screened to detect their DNA damage using a terbium fluorescent probe. Results demonstrated that 4-phenyl-imidazoles 5b and 5e in addition to 4-(4-chlorophenyl)imidazoles 5h and 5j would induce detectable potent damage in ctDNA. The four most potent compounds as DNA intercalators were further evaluated for their antiproliferative activity against HepG2, MCF-7 and HCT-116 utilizing the MTT assay. The highest anticancer activity was recorded with compounds 5b and 5h against the breast cancer cell line MCF-7 which were 1.5- and 3- folds more active than doxorubicin, respectively. Therefore, imidazole-2-thione tethered acenaphthylenone derivatives can be considered as promising scaffold for the development of effective dual DNA intercalators and topoisomerase II inhibitors.


Subject(s)
Antineoplastic Agents , Topoisomerase II Inhibitors , Topoisomerase II Inhibitors/pharmacology , Topoisomerase II Inhibitors/chemistry , Structure-Activity Relationship , Intercalating Agents/pharmacology , Thiones/pharmacology , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Cell Line, Tumor , Imidazoles/pharmacology , DNA , Apoptosis , Molecular Docking Simulation , DNA Topoisomerases, Type II/metabolism , Cell Proliferation
2.
J Enzyme Inhib Med Chem ; 39(1): 2304044, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38230430

ABSTRACT

New aromatic O-alkyl pyridine derivatives were designed and synthesised as Proviral Integration Moloney (PIM)-1 kinase inhibitors. 4c and 4f showed potent in vitro anticancer activity against NFS-60, HepG-2, PC-3, and Caco-2 cell lines and low toxicity against normal human lung fibroblast Wi-38 cell line. Moreover, 4c and 4f induced apoptosis in the four tested cancer cell lines with high percentage. In addition, 4c and 4f significantly induced caspase 3/7 activation in HepG-2 cell line. Furthermore, 4c and 4f showed potent PIM-1 kinase inhibitory activity with IC50 = 0.110, 0.095 µM, respectively. Kinetic studies indicated that 4c and 4f were both competitive and non-competitive inhibitors for PIM-1 kinase enzyme. In addition, in silico prediction of physiochemical properties, pharmacokinetic profile, ligand efficiency, ligand lipophilic efficiency, and induced fit docking studies were consistent with the biological and kinetic studies, and predicted that 4c and 4f could act as PIM-1 kinase competitive non-adenosine triphosphate (ATP) mimetics with drug like properties.


Subject(s)
Antineoplastic Agents , Pyridones , Humans , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Proto-Oncogene Proteins c-pim-1/chemistry , Proto-Oncogene Proteins c-pim-1/metabolism , Caspases/metabolism , Cell Line, Tumor , Protein Kinase Inhibitors/chemistry , Caco-2 Cells , Kinetics , Ligands , Apoptosis , Cell Proliferation , Molecular Docking Simulation , Drug Screening Assays, Antitumor , Structure-Activity Relationship
3.
J Enzyme Inhib Med Chem ; 38(1): 2152810, 2023 Dec.
Article in English | MEDLINE | ID: mdl-36629075

ABSTRACT

New quinoline-pyridine hybrids were designed and synthesised as PIM-1/2 kinase inhibitors. Compounds 5b, 5c, 6e, 13a, 13c, and 14a showed in-vitro low cytotoxicity against normal human lung fibroblast Wi-38 cell line and potent in-vitro anticancer activity against myeloid leukaemia (NFS-60), liver (HepG-2), prostate (PC-3), and colon (Caco-2) cancer cell lines. In addition, 6e, 13a, and 13c significantly induced apoptosis with percentage more than 66%. Moreover, 6e, 13a, and 13c significantly induced caspase 3/7 activation in HepG-2 cell line. Furthermore, 5c, 6e, and 14a showed potent in-vitro PIM-1 kinase inhibitory activity. While, 5b showed potent in-vitro PIM-2 kinase inhibitory activity. Kinetic studies using Lineweaver-Burk double-reciprocal plot indicated that 5b, 5c, 6e, and 14a behaved as competitive inhibitors while 13a behaved as both competitive and non-competitive inhibitor of PIM-1 kinase enzyme. Molecular docking studies indicated that, in-silico affinity came in coherence with the observed in-vitro inhibitory activities against PIM-1/2 kinases.


Subject(s)
Antineoplastic Agents , Quinolines , Male , Humans , Antineoplastic Agents/pharmacology , Proto-Oncogene Proteins c-pim-1/metabolism , Proto-Oncogene Proteins c-pim-1/pharmacology , Caspase 3/metabolism , Molecular Docking Simulation , Cell Line, Tumor , Kinetics , Caco-2 Cells , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/metabolism , Pyridines/pharmacology , Apoptosis , Quinolines/pharmacology , Cell Proliferation , Drug Screening Assays, Antitumor
4.
Bioorg Chem ; 80: 674-692, 2018 10.
Article in English | MEDLINE | ID: mdl-30064079

ABSTRACT

A series of pyridine and thieno[2,3-b]pyridine derivatives have been designed and synthesized as anticancer PIM-1 kinase inhibitors. Thirty-seven compounds were selected by NCI to be tested initially at a single dose (10 µM) in the full NCI 60 cell line panel. Compound 5b showed potent anticancer activity and was tested twice in the five-dose assay which confirmed its potent antitumor activity (GI50 values 0.302-3.57 µM) against all tested tumor cell lines except six cell lines where they showed moderate sensitivity. This compound was sent to NCI biological evaluation committee and still under consideration for further testing. In addition, the most active anticancer compounds in each series, 5b, 8d, 10c, 13h, and 15e, were evaluated for their PIM-1 kinase inhibitory activity. Compound 8d was the most potent one with IC50 = 0.019 µM followed by 5b, 15e, 10c and 13h with IC50 values 0.044, 0.083, 0.128 and 0.479 µM respectively. Moreover, docking study of the most active compounds in PIM-1 kinase active site was consistent with the in vitro activity.


Subject(s)
Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/pharmacology , Proto-Oncogene Proteins c-pim-1/antagonists & inhibitors , Thienopyridines/chemistry , Thienopyridines/pharmacology , Antineoplastic Agents/chemical synthesis , Cell Line, Tumor , Drug Design , Drug Screening Assays, Antitumor , Humans , Molecular Docking Simulation , Neoplasms/drug therapy , Neoplasms/metabolism , Protein Kinase Inhibitors/chemical synthesis , Proto-Oncogene Proteins c-pim-1/metabolism , Thienopyridines/chemical synthesis
SELECTION OF CITATIONS
SEARCH DETAIL
...