Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Clin Exp Dent Res ; 10(3): e901, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38770577

ABSTRACT

OBJECTIVES: The study aimed to evaluate the debonding resistance of three different endocrown designs on molar teeth, using three different zirconia surface pretreatments. MATERIAL AND METHOD: Ninety human mandibular first molars were divided into three main groups: endocrowns without ferrule, with 1 mm ferrule, and with 2 mm ferrule. The subgroups were defined by their surface pretreatment method used (n = 15): 50 µm alumina air-particle abrasion, silica coating using 30 µm Cojet™ particles, and Zircos-E® etching. The endocrowns were fabricated using multilayer zirconia ceramic, cemented with self-adhesive resin cement, and subjected to 5000 thermocycles (5-55°C) before debonding. The data obtained were analyzed using a two-way ANOVA. RESULTS: All test specimens survived the thermocyclic aging. The results indicated that both the preparation design and the surface treatment had a significant impact on the resistance to debonding of the endocrowns (p < .001). The 2 mm ferrule followed by the 1 mm ferrule designs exhibited the highest debonding resistance, both were superior to the endocrown without ferrule. Zircos-E® etching and silica coating yielded comparable debonding resistance, which were significantly higher than alumina air-particle abrasion. All endocrowns demonstrated a favorable failure mode. CONCLUSIONS: All designs and surface treatments showed high debonding resistance for a single restoration. However, ferrule designs with Zircos-E® etching or silica coating may represent better clinical options compared to the nonferrule design or alumina airborne-particle abrasion. Nonetheless, further research, including fatigue testing and evaluations with different luting agents is recommended.


Subject(s)
Aluminum Oxide , Silicon Dioxide , Surface Properties , Zirconium , Aluminum Oxide/chemistry , Humans , Silicon Dioxide/chemistry , Zirconium/chemistry , Molar , Materials Testing , Air Abrasion, Dental/methods , Resin Cements/chemistry , Dental Etching/methods , Dental Stress Analysis , Dental Prosthesis Design
2.
Materials (Basel) ; 17(6)2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38541565

ABSTRACT

The study aimed to assess the marginal, axial, and internal adaptation, as well as the fracture resistance of zirconia-reinforced lithium silicate (ZLS) endocrowns with varying pulpal inlay extensions and marginal geometry. Sixty extracted maxillary first molar teeth were divided into six groups (n = 10) according to pulpal inlay extension and marginal configuration. The first three groups (J2, J3, and J4) utilized prepared teeth for endocrowns without ferrule design and 2 mm, 3 mm, and 4 mm pulpal extensions, respectively. The second three groups (F2, F3, and F4) utilized prepared teeth with 1 mm shoulder margins and 2 mm, 3 mm, and 4 mm pulpal extensions. The endocrowns were fabricated from ZLS blocks using CAD/CAM milling technology. After cementation, the specimens underwent thermal aging for 5000 cycles and were evaluated for marginal adaptation. Using a universal testing machine, the fracture resistance was tested under quasistatic loading (1 mm/min). Two-way ANOVA and the Tukey's post hoc test were employed for data analysis (p ≤ 0.05). The results of this study revealed that endocrowns without ferrule exhibited superior fracture strength than a 1 mm ferrule design p < 0.05, irrespective of the inlay depth. All designs with and without ferrule and all inlay depths showed clinically acceptable marginal and internal fit. The conventional endocrown design without ferrule and 2 mm inlay depth showed the lowest surface gap. The pulpal surface showed the highest discrepancy among all groups compared to the other surfaces. Endocrowns without ferrule are more conservative and have higher fracture strength than 1 mm ferrule designs; extending the inlay depth showed a significant increase in fracture resistance of the 1 mm ferrule design, but not for the conventional design without ferrule and 2 mm inlay depth. All groups exhibited a high auspicious fracture strength value for molar endocrown restorations.

3.
Clin Exp Dent Res ; 10(1): e843, 2024 02.
Article in English | MEDLINE | ID: mdl-38345492

ABSTRACT

OBJECTIVES: To evaluate how various tooth preparation designs impact the adaptation-both at the margins and internally-and the retentive strength of computer-aided design and computer-aided manufacturing (CAD/CAM) produced endocrowns. MATERIALS AND METHODS: 60 extracted human mandibular first molars were endodontically treated and assigned into three groups (n = 20) according to the tooth preparation design: Group N: butt joint design, Group F and F1 received 1- and 2-mm circumferential ferrule preparation, respectively. Endocrowns were milled using either lithium disilicate glass-ceramic (IPS emax ceramic) or monolithic zirconia. The internal and marginal adaptation of the endocrowns were evaluated using the replica technique. After cementation, the endocrowns of all test groups were dislodged axially at 0.5 mm/min using a universal testing machine. A 2-way ANOVA and the independent samples t-test (α = .05) were performed to statistically analyze the data. RESULTS: The effect of changing the design of the tooth preparation (butt joint, ferrule) on the marginal and internal gap was shown to be statistically significant (p < .05); the lower gap values were recorded at the axial followed by cervical, marginal, and pulpal floor walls in both ceramic groups regardless of the teeth preparation design. The ANOVA test revealed similar average removal forces and stresses for the two types of tested ceramic materials. CONCLUSION: IPS emax ceramic adapted better than monolithic zirconia ceramic, regardless of the preparation design. Ferrule preparation design is more retentive than butt joint preparation, regardless of the type of ceramic material used.


Subject(s)
Crowns , Dental Prosthesis Design , Zirconium , Humans , Dental Prosthesis Design/methods , Materials Testing , Ceramics , Tooth Preparation , Computer-Aided Design
4.
Pharmaceuticals (Basel) ; 16(4)2023 Apr 04.
Article in English | MEDLINE | ID: mdl-37111297

ABSTRACT

Cancer is considered one of the most burdensome diseases affecting lives and, hence, the economy. Breast cancer is one of the most common types of cancer. Patients with breast cancer are divided into two groups: one group responds to the chemotherapy, and the other group resists the chemotherapy. Unfortunately, the group which resists the chemotherapy is still suffering the pain associated with the severe side effects of the chemotherapy. Therefore, there is a critical need for a method to differentiate between both groups before the administration of the chemotherapy. Exosomes, the recently discovered nano-vesicles, are often used as cancer diagnostic biomarkers as their unique composition allows them to represent their parental cells, which makes them promising indicators for tumor prognosis. Exosomes contain proteins, lipids, and RNA that exist in most body fluids and are expelled by multiple cell types, including cancer cells. Furthermore, exosomal RNA has been significantly used as a promising biomarker for tumor prognosis. Herein, we have developed an electrochemical system that could successfully differentiate between MCF7 and MCF7/ADR depending on the exosomal RNA. The high sensitivity of the proposed electrochemical assay opens the door for further investigation that will address the other type of cancer cells.

SELECTION OF CITATIONS
SEARCH DETAIL
...