Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 24(23)2023 Dec 04.
Article in English | MEDLINE | ID: mdl-38069428

ABSTRACT

Cancer is one of the main causes of death globally. Radiotherapy/Radiation therapy (RT) is one of the most common and effective cancer treatments. RT utilizes high-energy radiation to damage the DNA of cancer cells, leading to their death or impairing their proliferation. However, radiation resistance remains a significant challenge in cancer treatment, limiting its efficacy. Emerging evidence suggests that cathepsin L (cath L) contributes to radiation resistance through multiple mechanisms. In this study, we investigated the role of cath L, a member of the cysteine cathepsins (caths) in radiation sensitivity, and the potential reduction in radiation resistance by using the specific cath L inhibitor (Z-FY(tBu)DMK) or by knocking out cath L with CRISPR/Cas9 in colon carcinoma cells (caco-2). Cells were treated with different doses of radiation (2, 4, 6, 8, and 10), dose rate 3 Gy/min. In addition, the study conducted protein expression analysis by western blot and immunofluorescence assay, cytotoxicity MTT, and apoptosis assays. The results demonstrated that cath L was upregulated in response to radiation treatment, compared to non-irradiated cells. In addition, inhibiting or knocking out cath L led to increased radiosensitivity in contrast to the negative control group. This may indicate a reduced ability of cancer cells to recover from radiation-induced DNA damage, resulting in enhanced cell death. These findings highlight the possibility of targeting cath L as a therapeutic strategy to enhance the effectiveness of RT. Further studies are needed to elucidate the underlying molecular mechanisms and to assess the translational implications of cath L knockout in clinical settings. Ultimately, these findings may contribute to the development of novel treatment approaches for improving outcomes of RT in cancer patients.


Subject(s)
Carcinoma , Cathepsin L , Radiation Tolerance , Humans , Caco-2 Cells , Cathepsin L/genetics , Radiation Tolerance/genetics
2.
Int J Mol Sci ; 24(22)2023 Nov 09.
Article in English | MEDLINE | ID: mdl-38003335

ABSTRACT

Cathepsins (Caths) are lysosomal proteases that participate in various physiological and pathological processes. Accumulating evidence suggests that caths play a multifaceted role in cancer progression and radiotherapy resistance responses. Their proteolytic activity influences the tumor's response to radiation by affecting oxygenation, nutrient availability, and immune cell infiltration within the tumor microenvironment. Cathepsin-mediated DNA repair mechanisms can promote radioresistance in cancer cells, limiting the efficacy of radiotherapy. Additionally, caths have been associated with the activation of prosurvival signaling pathways, such as PI3K/Akt and NF-κB, which can confer resistance to radiation-induced cell death. However, the effectiveness of radiotherapy can be limited by intrinsic or acquired resistance mechanisms in cancer cells. In this study, the regulation and expression of cathepsin B (cath B) in the colon carcinoma cell line (caco-2) before and after exposure to radiation were investigated. Cells were exposed to escalating ionizing radiation doses (2 Gy, 4 Gy, 6 Gy, 8 Gy, and 10 Gy). Analysis of protein expression, in vitro labeling using activity-based probes DCG04, and cath B pull-down revealed a radiation-induced up-regulation of cathepsin B in a dose-independent manner. Proteolytic inhibition of cathepsin B by cathepsin B specific inhibitor CA074 has increased the cytotoxic effect and cell death due to ionizing irradiation treatment in caco-2 cells. Similar results were also obtained after cathepsin B knockout by CRISPR CAS9. Furthermore, upon exposure to radiation treatment, the inhibition of cath B led to a significant upregulation in the expression of the proapoptotic protein BAX, while it induced a significant reduction in the expression of the antiapoptotic protein BCL-2. These results showed that cathepsin B could contribute to ionizing radiation resistance, and the abolishment of cathepsin B, either by inhibition of its proteolytic activity or expression, has increased the caco-2 cells susceptibility to ionizing irradiation.


Subject(s)
Carcinoma , Colonic Neoplasms , Humans , Apoptosis , Caco-2 Cells , Cathepsin B/metabolism , Cell Line, Tumor , Colonic Neoplasms/radiotherapy , Phosphatidylinositol 3-Kinases , Radiation, Ionizing , Tumor Microenvironment
3.
Int J Mol Sci ; 24(3)2023 Jan 19.
Article in English | MEDLINE | ID: mdl-36768354

ABSTRACT

Enniatin B (ENN B) and Beauvericin (BEA) are cyclohexadepsipeptides that can be isolated from Fusarium and Beauveria bassiana, respectively. Both compounds are cytotoxic and ionophoric. In the present study, the mechanism of cell death induced by these compounds was investigated. Epidermal carcinoma-derived cell line KB-3-1 cells were treated with different concentrations of these compounds. The extracellular secretion of cathepsin B increased in a concentration-dependent manner, and the lysosomal staining by lysotracker red was reduced upon the treatment with any of the compounds. However, the extracellular secretion of cathepsin L and cathepsin D were not affected. Inhibition of cathepsin B with specific inhibitor CA074 significantly reduced the cytotoxic effect of both compounds, while inhibition of cathepsin D or cathepsin L did not influence the cytotoxic activities of both compounds. In vitro labelling of lysosomal cysteine cathepsins with Ethyl (2S, 3S)-epoxysuccinate-Leu-Tyr-Acp-Lys (Biotin)-NH2 (DCG04) was not affected in case of cathepsin L upon the treatment with both compounds, while it was significantly reduced in case of cathepsin B. In conclusion, ENN B and BEA increase lysosomal Ph, which inhibits delivery of cathepsin B from Golgi to lysosomes, thereby inducing cathepsin B release in cytosol, which activates caspases and hence the apoptotic pathway.


Subject(s)
Cathepsin B , Cathepsin D , Cathepsin B/metabolism , Cathepsin D/metabolism , Cathepsin L/metabolism , Cell Death , Apoptosis , Lysosomes/metabolism
4.
J Environ Manage ; 319: 115674, 2022 Oct 01.
Article in English | MEDLINE | ID: mdl-35868190

ABSTRACT

In this study, 3D C2S3 (CS) and 2D Bi2S3 (BS) modified NiCr2O4 nanocomposite (NCO-BS-CS NCs) was prepared by sonochemical assisted co-precipitation method for the enhanced photocatalytic activity. Here, NCO-BS-CS NCs showed band gap energy of 2.23 eV and the PL intensity of NCO-BS-CS NCs was lower than NCO, BS, and CS NPs. Thus, the results indicate the fabricated NCO-BS-CS NCs enhance the charge segregation and lower in recombination rate. NCO-BS-CS NCs showed enhanced photodegradation of methyl orange (MO) (95%) and congo red (CR) (99.7%) respectively. The total organic compound (TOC) analysis shows the complete mineralization of about 91 and 98% for MO and CR respectively. Furthermore, the Fukui function was used for the prediction of reactive sites in the photodegradation pathway of MO and CR by NCs. ECOSAR program was done to determine the toxicity of the intermediate and the results conclude that the degraded product shows nontoxic to the environmental organism (fish, daphnia, and algae). Thus, the fabricated NCO-BS-CS NCs can be used for the remediation of toxic organic pollutants from the waste water by photocatalytic degradation.


Subject(s)
Environmental Pollutants , Nanocomposites , Water Pollutants, Chemical , Animals , Catalysis , Catalytic Domain , Congo Red/chemistry , Environmental Pollutants/analysis , Light , Nanocomposites/chemistry , Nanocomposites/toxicity , Skeleton/chemistry , Water Pollutants, Chemical/chemistry
5.
Chemosphere ; 302: 134802, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35504466

ABSTRACT

In account of environmental remediation, an ideal photocatalyst was fabricated for the effective treatment of water systems. Herein, dual heterojunctions framed CuWO4/Bi2WO6/MnS nanocomposite (NCs) was synthesized via simple co-precipitation method followed by ultra-sonicated assisted route. The prepared NCs were investigated its photocatalytic degradation performance using para-chlorophenol (4-CP) and reduction of chromium VI (Cr (VI)) under visible light irradiation. The photocatalyst were characterized by various analytical techniques including XRD, HR-TEM, XPS, UV-vis DRS, FE-SEM, EIS, PL, ESR, Raman and N2 adsorption and desorption studies. The excellent photodegradation of 4-CP was observed within 180 min by the NCs. Similarly, the Cr (VI) reduction was about 97% within 140 min. The effect of pH and influence of different dosage of NCs and 4-CP on the photodegradation efficiency was investigated. The reusability and stability of the NCs was examined over 6 consecutive runs where the XRD and XPS confirm the structural stability of the prepared NCs. The scavenging experiment were carried out to elucidate the mechanism and the active species involved were O2-• and OH• radicals. The TOC analysis affirmed the complete mineralization of the prepared NCs. The ecotoxicity analysis was carried out to determine the toxicity effect of intermediates using ECOSAR software and the end product toxicity was also evaluated against E. coli and S. epidermis. The end product toxicity study also confirmed that the degraded product was less toxic compared to parent compound. Further, the genotoxicity study was done to understand the environmental impact using allium cepa and results confirms that there are no causes of cytotoxicity & genotoxicity by the prepared NCs. Therefore, the prepared NCs can be economical, efficient with excellent photocatalytic performance and environment friendly.


Subject(s)
Chlorophenols , Environmental Restoration and Remediation , Nanocomposites , Water Pollutants, Chemical , Catalysis , Chlorophenols/toxicity , Chromium , Escherichia coli , Water Pollutants, Chemical/chemistry , Water Pollutants, Chemical/toxicity
6.
Chemosphere ; 303(Pt 1): 134963, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35588875

ABSTRACT

Pharmaceutical pollutant in the environmental water bodies has become a major concern, which causes adverse effect to aquatic entities. This study provides an incisive insight on the photocatalytic degradation of ciprofloxacin (CIP) and the development of rationally engineered g-C3N4-NiCo2O4-Zn0.3Fe2·7O4 nanocomposite for boosted photocatalytic performance under visible light irradiation. The g-C3N4-NiCo2O4-Zn0.3Fe2·7O4 nanocomposite was synthesized via ultrasonication-assisted hydrothermal method. The characterization of the as-prepared material was evaluated by XPS, SEM, HR-TEM, PL, FT-IR, EIS, ESR, XRD, BET, and UV-Vis DRS techniques. Furthermore, the effect of catalytic dosage, drug dosage, and pH changes was explored, where g-C3N4-NiCo2O4-Zn0.3Fe2·7O4-10% unveiled excellent visible light photo-Fenton degradation of 92% for CIP at 140 min. The hydroxyl radicals (OH.) served as the predominant radical species on the photodegradation of CIP, which was confirmed by performing a radical scavenging test. Furthermore, the degradation efficiency was determined by six consecutive cycle tests, where the nanomaterial exhibited excellent stability with 98.5% reusable efficiency. The degradation of CIP was further scrutinized by GC-MS analysis, where the degraded intermediate products and the possible pathway were elucidated. The degraded product toxicity was determined by ECOSAR program, where the degraded products haven't exhibited any considerable toxic effects. In addition, the genotoxicity of the nanomaterial was determined by treating them with root tips of A. cepa, where it was found to be non-toxic. Here, the prepared g-C3N4-NiCo2O4-Zn0.3Fe2·7O4 nanocomposite (CNZ NCs) shows eco-friendly and excellent photo-Fenton activity for environmental applications.


Subject(s)
Ciprofloxacin , Onions , Catalysis , Ciprofloxacin/toxicity , DNA Damage , Light , Spectroscopy, Fourier Transform Infrared , Zinc
7.
Spectrochim Acta A Mol Biomol Spectrosc ; 279: 121330, 2022 Oct 15.
Article in English | MEDLINE | ID: mdl-35605418

ABSTRACT

L-cystine (L-cys) functionalized plasmonic silver nanomaterial (Ag NPs) was fabricated toward the selective and sensitive detection of paracetamol and cadmium. The prepared L-cys-Ag nanoparticles (NPs) were characterized by transmission electron microscopy (TEM), scanning electron microscopy (SEM), X-ray diffraction spectroscopy (XRD) and fourier transform infrared spectroscopy (FTIR) analyses. SEM imaging show that Ag NPs was decorated on the surface of L-cysteine 3D cubic nanosheet. L-cys-Ag NPs showed selective and sensitive detection towards paracetamol and cadmium. The interference study confirms that the presence of other metal ions didn't inhibit the detection of cadmium by L-cys-Ag NPs. The limit of detection of paracetamol and cadmium by L-cys-Ag NPs was calculated to be 1.2 and 2.82 nM respectively. In addition, the real sample detection of paracetamol on blood serum and urine, and cadmium on STP were performed and the recovery percentage was above 97%. Further, the real sample analysis was performed in tap and drinking water and the recovery percentage was more than 98%. The analytic logic gate on the multicolour detection of cadmium and paracetamol was performed for the semi-quantitative monitoring of paracetamol and cadmium by L-cys-Ag NPs. The developed L-cys-Ag NPs were found to be an effective tool for the monitoring of cadmium in environmental water bodies and paracetamol in blood and urine.


Subject(s)
Metal Nanoparticles , Silver , Acetaminophen , Cadmium , Cystine , Metal Nanoparticles/chemistry , Silver/chemistry , Spectroscopy, Fourier Transform Infrared
SELECTION OF CITATIONS
SEARCH DETAIL
...