Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Open Vet J ; 14(1): 459-469, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38633163

ABSTRACT

Background: eEscherichia coli (E. coli) bacteria that produce extended spectrum beta-lactamase (ESBL) is associated with a high prevalence of human illnesses worldwide. The emergence of resistance to carbapenem and colistin compounds poses further challenges to the treatment options for these illnesses. This study aimed to evaluate the phenotypic and genotypic pattern of resistance to carbapenem and colistin in ESBL-producing E. coli. Escherichia coli isolates collected from the respiratory tract of chickens in El-Sharkia government, Egypt. Methods: A total of 250 lung samples were collected from 50 poultry farms. These samples were then subjected to isolation, identification, and serotyping of E. coli. The presence of antimicrobial resistance was identified by disc diffusion testing. The occurrence of ESBL phenotypes was also assessed using the double disc synergy method. PCR/sequencing techniques were employed to examine the presence of ESBL (ß-lactamase (bla)-TEM, blaSHV, and blaCTX-M), colistin (mcr-1), and carbapenem (blaNDM, blaVIM, and blaKPC) resistance genes. Results: The findings revealed that 140 out of 250 (56%) were identified as E. coli. All E. coli isolates had a high level of multi-antimicrobial resistance (MAR) with an index value greater than 0.2, and 65.7% of them were confirmed to produce ESBL. Out of the 92 ESBL phenotypes, 55 (59.7%), 32 (34.7%), 18 (19.6%), and 37 (40.2%) isolates harbor b laTEM-3, b laSHV-4, b laCTX-M-1, a nd blaCTX-M-14 genes, respectively. The blaNDM-1 gene was identified in all 40 phenotypes that exhibited resistance to carbapenem, accounting for 28.5% of all strains of E. coli and 43.4% of ESBL isolates. The VIM and KPC genes were not detected in any of the samples. Furthermore, there was a significant prevalence of the mobilized colistin resistance (mcr)-1 gene, with 64 (69.5%) of the ESBL isolates exhibiting this gene. Conclusion: The prevalence of ESBL-producing E. coli, particularly those resistant to carbapenem and colistin, poses a significant public health risk in society.


Subject(s)
Colistin , Escherichia coli Infections , Animals , Humans , Colistin/pharmacology , Escherichia coli , Carbapenems/pharmacology , Anti-Bacterial Agents/pharmacology , Poultry , Escherichia coli Infections/veterinary , Farms , Egypt , Chickens , Drug Resistance, Bacterial/genetics , beta-Lactamases/genetics , beta-Lactamases/pharmacology , Phenotype
2.
Pak J Biol Sci ; 25(6): 516-530, 2022 Jan.
Article in English | MEDLINE | ID: mdl-36098187

ABSTRACT

<b>Background and Objective:</b> Late sowing of wheat exposes the anthesis and grain filling stages of the crop to a terminal heat temperature stress Therefore, detecting putative QTL associated with grain yield and its attributes and identifying the most tolerant genotypes to terminal drought and heat stress across environments will be beneficial in wheat breeding programs. <b>Materials and Methods:</b> In the present study, among 49 CIMMYT wheat lines evaluated for yield and stability in eight environments, we selected the highest ten high-yielding (HYL) and the lowest ten low yielding lines (LYL) along with three wheat check cultivars (CC) for screening with eighteen previously published SSR molecular markers associated with drought and heat stress tolerance. <b>Results:</b> Two SSR markers (BARC126 and BARC11) on 7D were associated with delay heading dates under normal and late sowing dates. Likewise, the SSR markers WMC396, GWM537 and XGWM577 which were mapped on 7B, were significantly linked with grain yield-related traits under one/or both sowing dates, most of them showed desirable effects, indicating terminal heat stress tolerance. Different SSR markers viz., BARC11, XGWM132 and GWM537 showed pleiotropic effects. <b>Conclusion:</b> The SSR markers BARC186-5A, XGWM132-6B, WMC396-7B, XGWM577-7B and GWM165-4B were more prominently associated with heat tolerance by showing a desirable performance of grain yield-related traits under late sowing or across environments, some of these desirable alleles were corresponding to previously QTL in various genotypes that could be valuable in breeding for high-yield in wheat.


Subject(s)
Thermotolerance , Triticum , Edible Grain/genetics , Heat-Shock Response/genetics , Plant Breeding , Thermotolerance/genetics , Triticum/genetics
3.
Rice (N Y) ; 15(1): 16, 2022 Mar 14.
Article in English | MEDLINE | ID: mdl-35288814

ABSTRACT

Inoculating rice plants by plant growth promoting rhizobacteria (PGPR) may be used as a practical and eco-friendly approach to sustain the growth and yield of drought stressed rice plants. The effect of rice inoculation using plant growth hormones was investigated under drip full irrigation (FI; 100% of evapotranspiration (ETc), and deficit irrigation (DI; 80% of ETc) on growth, physiological responses, yields and water productivities under saline soil (ECe = 6.87 dS m-1) for 2017 and 2018 seasons. Growth (i.e. shoot length and shoot dry weight), leaf photosynthetic pigments (chlorophyll 'a' and chlorophyll 'b' content), air-canopy temperature (Tc-Ta), membrane stability index (MSI%), and relative water content, (RWC%) chlorophyll fluorescence (Fv/Fm) stomatal conductance (gs), total phenols, peroxidase (PO), polyphenol oxidase (PPO), nitrogen contents and water productivities (grain water productivity; G-WP and straw water productivity; S-WP) were positively affected and significantly (p < 0.05) differed in two seasons in response to the applied PGPR treatments. The highest yields (3.35 and 6.7 t ha-1 for grain and straw yields) as the average for both years were recorded under full irrigation and plants inoculated by PGPR. The results indicated that under water scarcity, application of (I80 + PGPR) treatment was found to be favorable to save 20% of the applied irrigation water, to produce not only the same yields, approximately, but also to save more water as compared to I100%.

SELECTION OF CITATIONS
SEARCH DETAIL
...