Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Biotechnol ; 41(7): 980-992, 2023 Jul.
Article in English | MEDLINE | ID: mdl-36593401

ABSTRACT

Identification of CD8+ T cell epitopes is critical for the development of immunotherapeutics. Existing methods for major histocompatibility complex class I (MHC class I) ligand discovery are time intensive, specialized and unable to interrogate specific proteins on a large scale. Here, we present EpiScan, which uses surface MHC class I levels as a readout for whether a genetically encoded peptide is an MHC class I ligand. Predetermined starting pools composed of >100,000 peptides can be designed using oligonucleotide synthesis, permitting large-scale MHC class I screening. We exploit this programmability of EpiScan to uncover an unappreciated role for cysteine that increases the number of predicted ligands by 9-21%, reveal affinity hierarchies by analysis of biased anchor peptide libraries and screen viral proteomes for MHC class I ligands. Using these data, we generate and iteratively refine peptide binding predictions to create EpiScan Predictor. EpiScan Predictor performs comparably to other state-of-the-art MHC class I peptide binding prediction algorithms without suffering from underrepresentation of cysteine-containing peptides. Thus, targeted immunopeptidomics using EpiScan will accelerate CD8+ T cell epitope discovery toward the goal of individual-specific immunotherapeutics.


Subject(s)
Cysteine , Histocompatibility Antigens Class I , Ligands , Histocompatibility Antigens Class I/genetics , Histocompatibility Antigens Class I/metabolism , Peptides/metabolism , Epitopes, T-Lymphocyte/genetics , Protein Binding
2.
Cell ; 178(4): 1016-1028.e13, 2019 08 08.
Article in English | MEDLINE | ID: mdl-31398327

ABSTRACT

T cell recognition of specific antigens mediates protection from pathogens and controls neoplasias, but can also cause autoimmunity. Our knowledge of T cell antigens and their implications for human health is limited by the technical limitations of T cell profiling technologies. Here, we present T-Scan, a high-throughput platform for identification of antigens productively recognized by T cells. T-Scan uses lentiviral delivery of antigen libraries into cells for endogenous processing and presentation on major histocompatibility complex (MHC) molecules. Target cells functionally recognized by T cells are isolated using a reporter for granzyme B activity, and the antigens mediating recognition are identified by next-generation sequencing. We show T-Scan correctly identifies cognate antigens of T cell receptors (TCRs) from viral and human genome-wide libraries. We apply T-Scan to discover new viral antigens, perform high-resolution mapping of TCR specificity, and characterize the reactivity of a tumor-derived TCR. T-Scan is a powerful approach for studying T cell responses.


Subject(s)
Antigens, Neoplasm/immunology , Epitopes, T-Lymphocyte/immunology , Genes, MHC Class I/immunology , HLA Antigens/immunology , Neoplasm Proteins/immunology , Receptors, Antigen, T-Cell/immunology , Antigen Presentation/immunology , Antigens, Neoplasm/genetics , Blood Donors , CD8-Positive T-Lymphocytes/metabolism , Female , Gene Knockout Techniques , Genes, MHC Class I/genetics , Granzymes/metabolism , HEK293 Cells , HLA Antigens/genetics , Humans , Neoplasm Proteins/genetics , Transduction, Genetic , Transfection
3.
J Vis Exp ; (131)2018 01 05.
Article in English | MEDLINE | ID: mdl-29364275

ABSTRACT

Clustered regularly interspaced short palindromic repeats (CRISPR) is an adaptive immunity system in prokaryotes that has been repurposed by scientists to generate RNA-guided nucleases, such as CRISPR-associated (Cas) 9 for site-specific eukaryotic genome editing. Genome engineering by Cas9 is used to efficiently, easily and robustly modify endogenous genes in many biomedically-relevant mammalian cell lines and organisms. Here we show an example of how to utilize the CRISPR/Cas9 methodology to understand the biological function of specific genetic mutations. We model calreticulin (CALR) mutations in murine interleukin-3 (mIL-3) dependent pro-B (Ba/F3) cells by delivery of single guide RNAs (sgRNAs) targeting the endogenous Calr locus in the specific region where insertion and/or deletion (indel) CALR mutations occur in patients with myeloproliferative neoplasms (MPN), a type of blood cancer. The sgRNAs create double strand breaks (DSBs) in the targeted region that are repaired by non-homologous end joining (NHEJ) to give indels of various sizes. We then employ the standard Ba/F3 cellular transformation assay to understand the effect of physiological level expression of Calr mutations on hematopoietic cellular transformation. This approach can be applied to other genes to study their biological function in various mammalian cell lines.


Subject(s)
CRISPR-Cas Systems , Calreticulin/genetics , Gene Editing/methods , Hematopoietic Stem Cells/physiology , Animals , Calreticulin/immunology , Cell Line , Frameshift Mutation , Hematopoiesis , Humans , INDEL Mutation , Interleukin-3/deficiency , Interleukin-3/genetics , Mice
4.
Blood ; 131(7): 782-786, 2018 02 15.
Article in English | MEDLINE | ID: mdl-29288169

ABSTRACT

Mutations in calreticulin (CALR) are phenotypic drivers in the pathogenesis of myeloproliferative neoplasms. Mechanistic studies have demonstrated that mutant CALR binds to the thrombopoietin receptor MPL, and that the positive electrostatic charge of the mutant CALR C terminus is required for mutant CALR-mediated activation of JAK-STAT signaling. Here we demonstrate that although binding between mutant CALR and MPL is required for mutant CALR to transform hematopoietic cells; binding alone is insufficient for cytokine independent growth. We further show that the threshold of positive charge in the mutant CALR C terminus influences both binding of mutant CALR to MPL and activation of MPL signaling. We find that mutant CALR binds to the extracellular domain of MPL and that 3 tyrosine residues within the intracellular domain of MPL are required to activate signaling. With respect to mutant CALR function, we show that its lectin-dependent function is required for binding to MPL and for cytokine independent growth, whereas its chaperone and polypeptide-binding functionalities are dispensable. Together, our findings provide additional insights into the mechanism of the pathogenic mutant CALR-MPL interaction in myeloproliferative neoplasms.


Subject(s)
Calreticulin/genetics , Calreticulin/metabolism , Myeloproliferative Disorders/genetics , Protein Interaction Domains and Motifs , Receptors, Thrombopoietin/genetics , Receptors, Thrombopoietin/metabolism , Calreticulin/chemistry , Cells, Cultured , HEK293 Cells , Hematologic Neoplasms/genetics , Hematologic Neoplasms/metabolism , Hematologic Neoplasms/pathology , Humans , Mutagenesis , Mutant Proteins/chemistry , Mutant Proteins/genetics , Mutant Proteins/metabolism , Myeloproliferative Disorders/metabolism , Myeloproliferative Disorders/pathology , Protein Binding , Protein Interaction Domains and Motifs/genetics , Protein Interaction Maps , Receptors, Thrombopoietin/chemistry , Signal Transduction
5.
Cancer Discov ; 7(11): 1336-1353, 2017 11.
Article in English | MEDLINE | ID: mdl-28974511

ABSTRACT

T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive malignancy of thymocytes. Using a transgenic screen in zebrafish, thymocyte selection-associated high mobility group box protein (TOX) was uncovered as a collaborating oncogenic driver that accelerated T-ALL onset by expanding the initiating pool of transformed clones and elevating genomic instability. TOX is highly expressed in a majority of human T-ALL and is required for proliferation and continued xenograft growth in mice. Using a wide array of functional analyses, we uncovered that TOX binds directly to KU70/80 and suppresses recruitment of this complex to DNA breaks to inhibit nonhomologous end joining (NHEJ) repair. Impaired NHEJ is well known to cause genomic instability, including development of T-cell malignancies in KU70- and KU80-deficient mice. Collectively, our work has uncovered important roles for TOX in regulating NHEJ by elevating genomic instability during leukemia initiation and sustaining leukemic cell proliferation following transformation.Significance: TOX is an HMG box-containing protein that has important roles in T-ALL initiation and maintenance. TOX inhibits the recruitment of KU70/KU80 to DNA breaks, thereby inhibiting NHEJ repair. Thus, TOX is likely a dominant oncogenic driver in a large fraction of human T-ALL and enhances genomic instability. Cancer Discov; 7(11); 1336-53. ©2017 AACR.This article is highlighted in the In This Issue feature, p. 1201.


Subject(s)
DNA End-Joining Repair/genetics , Genomic Instability/genetics , HMGB Proteins/genetics , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/genetics , Transcription Factors/genetics , Animals , Animals, Genetically Modified , Cell Proliferation/genetics , Humans , Ku Autoantigen/genetics , Mice , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/pathology , T-Lymphocytes/pathology , Xenograft Model Antitumor Assays , Zebrafish/genetics
6.
Cancer Discov ; 6(4): 368-81, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26951227

ABSTRACT

UNLABELLED: Somatic mutations in calreticulin (CALR) are present in approximately 40% of patients with myeloproliferative neoplasms (MPN), but the mechanism by which mutant CALR is oncogenic remains unclear. Here, we demonstrate that expression of mutant CALR alone is sufficient to engender MPN in mice and recapitulates the disease phenotype of patients with CALR-mutant MPN. We further show that the thrombopoietin receptor MPL is required for mutant CALR-driven transformation through JAK-STAT pathway activation, thus rendering mutant CALR-transformed hematopoietic cells sensitive to JAK2 inhibition. Finally, we demonstrate that the oncogenicity of mutant CALR is dependent on the positive electrostatic charge of the C-terminus of the mutant protein, which is necessary for physical interaction between mutant CALR and MPL. Together, our findings elucidate a novel paradigm of cancer pathogenesis and reveal how CALR mutations induce MPN. SIGNIFICANCE: The mechanism by which CALR mutations induce MPN remains unknown. In this report, we show that the positive charge of the CALR mutant C-terminus is necessary to transform hematopoietic cells by enabling binding between mutant CALR and the thrombopoietin receptor MPL.


Subject(s)
Calreticulin/genetics , Cell Transformation, Neoplastic/genetics , Mutation , Protein Interaction Domains and Motifs/genetics , Receptors, Thrombopoietin/genetics , Animals , Base Sequence , Bone Marrow Transplantation , Calreticulin/chemistry , Calreticulin/metabolism , Cell Line , Cell Transformation, Neoplastic/metabolism , Disease Models, Animal , Female , Frameshift Mutation , Hematopoietic Stem Cells/metabolism , Hematopoietic Stem Cells/pathology , Humans , Janus Kinases/antagonists & inhibitors , Janus Kinases/metabolism , Mice , Myeloproliferative Disorders/genetics , Myeloproliferative Disorders/metabolism , Myeloproliferative Disorders/pathology , Phenotype , Protein Binding , Protein Kinase Inhibitors/pharmacology , Receptors, Thrombopoietin/metabolism , STAT Transcription Factors/metabolism , Signal Transduction , Structure Collapse
7.
Nat Methods ; 11(8): 821-4, 2014 Aug.
Article in English | MEDLINE | ID: mdl-25042784

ABSTRACT

Cell transplantation into adult zebrafish has lagged behind mouse models owing to the lack of immunocompromised strains. Here we have created rag2(E450fs) mutant zebrafish that have reduced numbers of functional T and B cells but are viable and fecund. Mutant fish engraft muscle, blood stem cells and various cancers. rag2(E450fs) mutant zebrafish are the first immunocompromised zebrafish model that permits robust, long-term engraftment of multiple tissues and cancer.


Subject(s)
Cell Transplantation , DNA-Binding Proteins/genetics , Mutation , Zebrafish/genetics , Aged , Animals , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...