Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 16(15)2023 Jul 25.
Article in English | MEDLINE | ID: mdl-37569930

ABSTRACT

The aim of the study was to check the possibility of reusing aggregate from recycled concrete waste and rubber granules from car tires as partial substitution of natural aggregate. The main objective was to investigate the effects of recycled waste aggregate modified with polymer fibers on the compressive and flexural strength, modulus of elasticity and permeability of pervious concrete. Fibers with a multifilament structure and length of 54 mm were deliberately used to strengthen the joints among grains (max size 31.5 mm). Eight batches of designed mixes were used in the production of pervious concrete at fixed water/binder ratio of 0.34 with cement content of 350 kg/m3. Results showed that the use of recycled concrete aggregate (8/31.5 mm) with replacement ratio of 50% (by weight of aggregate) improved the mechanical properties of pervious concrete in all analyzed cases. Whereas the replacement of 10% rubber waste aggregate (2/5 mm) by volume of aggregate reduced the compressive strength by a maximum of 11.4%. Addition of 2 kg/m3 of polymer fibers proved the strengthening effect of concrete structure, enhancing the compressive and tensile strengths by a maximum of 23.4% and 25.0%, respectively. The obtained test results demonstrate the possibility of using the recycled waste aggregates in decarbonization process of pervious concrete production, but further laboratory and field performance tests are needed.

2.
Materials (Basel) ; 15(9)2022 Apr 29.
Article in English | MEDLINE | ID: mdl-35591554

ABSTRACT

Concrete is a material that is widely used in the construction market due to its availability and cost, although it is prone to fracture formation. Therefore, there has been a surge in interest in self-healing materials, particularly self-healing capabilities in green and sustainable concrete materials, with a focus on different techniques offered by dozens of researchers worldwide in the last two decades. However, it is difficult to choose the most effective approach because each research institute employs its own test techniques to assess healing efficiency. Self-healing concrete (SHC) has the capacity to heal and lowers the requirement to locate and repair internal damage (e.g., cracks) without the need for external intervention. This limits reinforcement corrosion and concrete deterioration, as well as lowering costs and increasing durability. Given the merits of SHCs, this article presents a thorough review on the subject, considering the strategies, influential factors, mechanisms, and efficiency of self-healing. This literature review also provides critical synopses on the properties, performance, and evaluation of the self-healing efficiency of SHC composites. In addition, we review trends of development in research toward a broad understanding of the potential application of SHC as a superior concrete candidate and a turning point for developing sustainable and durable concrete composites for modern construction today. Further, it can be imagined that SHC will enable builders to construct buildings without fear of damage or extensive maintenance. Based on this comprehensive review, it is evident that SHC is a truly interdisciplinary hotspot research topic integrating chemistry, microbiology, civil engineering, material science, etc. Furthermore, limitations and future prospects of SHC, as well as the hotspot research topics for future investigations, are also successfully highlighted.

3.
Materials (Basel) ; 14(2)2021 Jan 11.
Article in English | MEDLINE | ID: mdl-33440695

ABSTRACT

The huge demand for concrete is predicted to upsurge due to rapid construction developments. Environmental worries regarding the large amounts of carbon dioxide emanations from cement production have resulted in new ideas to develop supplemental cementing materials, aiming to decrease the cement volume required for making concrete. Palm-oil-fuel-ash (POFA) is an industrial byproduct derived from palm oil waste's incineration in power plants' electricity generation. POFA has high pozzolanic characteristics. It is highly reactive and exhibits satisfactory micro-filling ability and unique properties. POFA is commonly used as a partially-alternated binder to Portland cement materials to make POFA-based eco-efficient concrete to build building using a green material. This paper presents a review of the material source, chemical composition, clean production and short-term properties of POFA. A review of related literature provides comprehensive insights into the potential application of POFA-based eco-efficient concrete in the construction industry today.

SELECTION OF CITATIONS
SEARCH DETAIL
...