Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 230
Filter
1.
BMC Plant Biol ; 24(1): 502, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38840053

ABSTRACT

BACKGROUND: Lentil is a significant legume that are consumed as a staple food and have a significant economic impact around the world. The purpose of the present research on lentil was to assess the hydrothermal time model's capacity to explain the dynamics of Lens culinaris L. var. Markaz-09 seed germination, as well as to ascertain the germination responses at various sub-optimal temperatures (T) and water potentials (Ψ). In order to study lentil seed germination (SG) behavior at variable water potentials (Ψs) and temperatures (Ts). A lab experiment employing the hydrothermal time model was created. Seeds were germinated at six distinct temperatures: 15 0С, 20 0С, 25 0С, 30 0С, 35 0С, and 40 0С, with five Ψs of 0, -0.3, -0.6, -0.9, and - 1.2 MPa in a PEG-6000 (Polyethylene glycol 6000) solution. RESULTS: The results indicated that the agronomic parameters like Germination index (GI), Germination energy (GE), Timson germination index (TGI), were maximum in 25 0C at (-0.9 MPa) and lowest at 40 0C in 0 MPa. On other hand, mean germination time (MGT) value was highest at 15 0C in -1.2 MPa and minimum at 40 0C in (-0.6 MPa) while Mean germination rate (MGR) was maximum at 40 0C in (0 MPa) and minimum at 15 0C in (-0.6 MPa). CONCLUSIONS: The HTT model eventually defined the germination response of Lens culinaris L. var. Markaz-09 (Lentil) for all Ts and Ψs, allowing it to be employed as a predictive tool in Lens culinaris L. var. Markaz-09 (Lentil) seed germination simulation models.


Subject(s)
Germination , Lens Plant , Seeds , Temperature , Germination/physiology , Seeds/physiology , Seeds/growth & development , Lens Plant/physiology , Lens Plant/growth & development , Water/metabolism , Models, Biological , Osmotic Pressure
2.
BMC Plant Biol ; 24(1): 364, 2024 May 04.
Article in English | MEDLINE | ID: mdl-38702592

ABSTRACT

BACKGROUND: This study aimed to investigate the alterations in biochemical and physiological responses of oat plants exposed to antimony (Sb) contamination in soil. Specifically, we evaluated the effectiveness of an arbuscular mycorrhizal fungus (AMF) and olive mill waste (OMW) in mitigating the effects of Sb contamination. The soil was treated with a commercial strain of AMF (Rhizophagus irregularis) and OMW (4% w/w) under two different levels of Sb (0 and 1500 mg kg-1 soil). RESULTS: The combined treatment (OMW + AMF) enhanced the photosynthetic rate (+ 40%) and chlorophyll a (+ 91%) and chlorophyll b (+ 50%) content under Sb condition, which in turn induced more biomass production (+ 67-78%) compared to the contaminated control plants. More photosynthesis in OMW + AMF-treated plants gives a route for phenylalanine amino acid synthesis (+ 69%), which is used as a precursor for the biosynthesis of secondary metabolites, including flavonoids (+ 110%), polyphenols (+ 26%), and anthocyanins (+ 63%) compared to control plants. More activation of phenylalanine ammonia-lyase (+ 38%) and chalcone synthase (+ 26%) enzymes in OMW + AMF-treated plants under Sb stress indicated the activation of phenylpropanoid pathways in antioxidant metabolites biosynthesis. There was also improved shifting of antioxidant enzyme activities in the ASC/GSH and catalytic pathways in plants in response to OMW + AMF and Sb contamination, remarkably reducing oxidative damage markers. CONCLUSIONS: While individual applications of OMW and AMF also demonstrated some degree of plant tolerance induction, the combined presence of AMF with OMW supplementation significantly enhanced plant biomass production and adaptability to oxidative stress induced by soil Sb contamination.


Subject(s)
Antimony , Mycorrhizae , Olea , Soil Pollutants , Mycorrhizae/physiology , Olea/microbiology , Soil Pollutants/metabolism , Antimony/metabolism , Adaptation, Physiological , Industrial Waste , Photosynthesis/drug effects , Biodegradation, Environmental , Biomass
3.
Food Chem X ; 22: 101418, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38736980

ABSTRACT

Purpose of current study was to determine physicochemical, triglyceride composition, and functional groups of wild adlay accessions (brown, black, yellow, grey, green, off white, and purple) to find out its scope as cereal crop. Triglycerides, minerals and functional groups were determined through Gas chromatography, spectrophotometer and Fourier Transform Infrared (FTIR) spectrophotometer respectively. Results revealed variation among bulk densities, specific densities, percent empty spaces, and corresponding grain counts per 10 g of sample are useful in distinguishing brown, black, yellow, grey, green, off white, and purple wild adlay accessions. Specific density and grain count per 10 g sample was significantly related. No statistical relationship exists among the pronounced physical characteristics. Brown adlay expressed the highest protein, fat, and fiber contents 15.82%, 4.76% and 2.37% respectively. Protein, fat, ash, and fiber percent contents were found comparable to cultivated adlay. Spectrophotometric analysis revealed macro elements including phosphorus, potassium, calcium, and sodium in the range 0.3% - 2.2% and micro elements boron, iron, copper, zinc, and manganese in the range 1.6 mg/kg - 20.8 mg/kg. Gas chromatography showed polyunsaturated fatty acids (PUFA) constitute the primary fraction (39% ± 7.2) of wild adlay triglycerides. Linoleic and palmitic acids were present as prominent fatty acids, 43.5% ±1.4 and 26.3% ±1.4 respectively. Infra-red frequencies distinguished functional groups in narrow band and fingerprint region of protein in association with out of plane region leading to structural differences among adlay accessions. Comparison of major distinguishing vibrational frequencies among different flours indicated black adlay containing highest functional groups appeared promising for varietal development.

4.
Plant Physiol Biochem ; 211: 108705, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38714128

ABSTRACT

Research on nanoparticles (NPs) and future elevated CO2 (eCO2) is extensive, but the effects of SeNPs on plant growth and secondary metabolism under eCO2 remain uncertain. In this study, we explored the impact of SeNPs and/or eCO2 on the growth, physiology, chemical composition (primary metabolites, coumarins, and essential oils), and antioxidant capacity of Trachyspermum (T.) ammi. The treatment with SeNPs notably improved the biomass and photosynthesis of T. ammi plants, particularly under eCO2 conditions. Plant fresh and dry weights were improved by about 19, 33 and 36% in groups treated by SeNPs, eCO2, and SeNPs + eCO2, respectively. SeNPs + eCO2 induced photosynthesis, consequently enhancing sugar and amino acid levels. Similar to the increase in total sugars, amino acids showed variable enhancements ranging from 6 to 42% upon treatment with SeNPs + eCO2. At the level of the secondary metabolites, SeNPs + eCO2 substantially augmented coumarin biosynthesis and essential oil accumulation. Consistently, there were increases in coumarins and essential oil precursors (shikimic and cinnamic acids) and their biosynthetic enzymes. The enhanced accumulation of coumarins and essential oils resulted in increased overall antioxidant activity, as evidenced by improvements in FRAP, ORAC, TBARS, conjugated dienes, and inhibition % of hemolysis. Conclusively, the application of SeNPs demonstrates significant enhancements in plant growth and metabolism under future CO2 conditions, notably concerning coumarin metabolism and essential oil production of T. ammi.


Subject(s)
Carbon Dioxide , Coumarins , Oils, Volatile , Selenium , Oils, Volatile/metabolism , Coumarins/metabolism , Carbon Dioxide/metabolism , Carbon Dioxide/pharmacology , Selenium/metabolism , Selenium/pharmacology , Antioxidants/metabolism , Nanoparticles , Photosynthesis/drug effects
5.
BMC Plant Biol ; 24(1): 477, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38816803

ABSTRACT

BACKGROUND: The rate of germination and other physiological characteristics of seeds that are germinating are impacted by deep sowing. Based on the results of earlier studies, conclusions were drawn that deep sowing altered the physio-biochemical and agronomic characteristics of wheat (Triticum aestivum L.). RESULTS: In this study, seeds of wheat were sown at 2 (control) and 6 cm depth and the impact of exogenously applied salicylic acid and tocopherol (Vitamin-E) on its physio-biochemical and agronomic features was assessed. As a result, seeds grown at 2 cm depth witnessed an increase in mean germination time, germination percentage, germination rate index, germination energy, and seed vigor index. In contrast, 6 cm deep sowing resulted in negatively affecting all the aforementioned agronomic characteristics. In addition, deep planting led to a rise in MDA, glutathione reductase, and antioxidants enzymes including APX, POD, and SOD concentration. Moreover, the concentration of chlorophyll a, b, carotenoids, proline, protein, sugar, hydrogen peroxide, and agronomic attributes was boosted significantly with exogenously applied salicylic acid and tocopherol under deep sowing stress. CONCLUSIONS: The results of the study showed that the depth of seed sowing has an impact on agronomic and physio-biochemical characteristics and that the negative effects of deep sowing stress can be reduced by applying salicylic acid and tocopherol to the leaves.


Subject(s)
Germination , Salicylic Acid , Tocopherols , Triticum , Triticum/growth & development , Triticum/metabolism , Triticum/drug effects , Salicylic Acid/pharmacology , Salicylic Acid/metabolism , Tocopherols/metabolism , Germination/drug effects , Seeds/drug effects , Seeds/growth & development , Antioxidants/metabolism , Stress, Physiological , Sustainable Development , Chlorophyll/metabolism
6.
Chemosphere ; 358: 141909, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38593960

ABSTRACT

The extensive use of fenitrothion (FNT) in agricultural practices induces its persistence in soil and waterways. Therefore, it is essential to implement effective management practices such as using cyanobacteria for FNT removal and accumulation, particularly under accidental contamination. To this end, we evaluated the responses of two freshwater cyanobacteria taxa, Nostoc muscorum and Anabaena laxa to mild (7.5 mg L-1) and high (15 mg L-1) levels of FNT over a period of 7 d. Compared to N. muscorum, A. laxa was more tolerant to FNT, exhibiting higher FNT uptake and removal efficiencies at mild (16.3%) and high (17.5%) levels. FNT induced a dose-dependent decrease in cell growth, Chl a, phosphoenolpyruvate carboxylase and ribulose-1,5-bisphosphate carboxylase/oxygenase activities, which were more pronounced in N. muscorum. Moreover, FNT significantly increased oxidative damage markers i.e., increased lipid peroxidation (MDA), protein oxidation, H2O2 levels and NADPH oxidase enzyme activity, to more extent in N. muscorum. Compared to N. muscorum, A. laxa had high antioxidant capacity (FRAP), glutathione and increased activities of glutathione-S-transferase, glutathione reductase, glutathione peroxidase and superoxide dismutase, suggesting a robust antioxidant defense mechanism to mitigate FNT toxicity. However, N. muscorum devoted the induction of ascorbate content and the activity of catalase, peroxidase, monodehydroascorbate reductase, ascorbate peroxidase, and dehydroascorbate reductase enzymes. Although A. laxa had greater intracellular FNT, it experienced less FNT-induced oxidative stress, likely due to over production of antioxidants. Consequently, A. laxa is considered as a promising candidate for FNT phycoremediation. Our findings provide fundamental information on species-specific toxicity of FNT among cyanobacteria and the environmental risk of FNT toxicity in aquatic environments.


Subject(s)
Fenitrothion , Water Pollutants, Chemical , Water Pollutants, Chemical/toxicity , Water Pollutants, Chemical/metabolism , Fenitrothion/toxicity , Fenitrothion/metabolism , Fresh Water , Cyanobacteria/metabolism , Oxidative Stress/drug effects , Lipid Peroxidation/drug effects , Anabaena/metabolism , Anabaena/drug effects , Antioxidants/metabolism , Nostoc muscorum/metabolism , Glutathione Transferase/metabolism , Biodegradation, Environmental , Hydrogen Peroxide/metabolism
7.
Heliyon ; 10(6): e27811, 2024 Mar 30.
Article in English | MEDLINE | ID: mdl-38524627

ABSTRACT

Plant functional traits are consistently linked with certain ecological factors (i.e., abiotic and biotic), determining which components of a plant species pool are assembled into local communities. In this sense, non-native naturalized plants show more plasticity of morphological traits by adopting new habitat (an ecological niche) of the invaded habitats. This study focuses on the biomass allocation pattern and consistent traits-environment linkages of a naturalized Datura innoxia plant population along the elevation gradient in NW, Pakistan. We sampled 120 plots of the downy thorn apple distributed in 12 vegetation stands with 18 morphological and functional biomass traits during the flowering season and were analyzed along the three elevation zones having altitude ranges from 634.85 m to 1405.3 m from sear level designated as Group I to III identified by Ward's agglomerative clustering strategy (WACS). Our results show that many morphological traits and biomass allocation in different parts varied significantly (p < 0.05) in the pair-wise comparisons along the elevation. Likewise, all plant traits decreased from lower (drought stress) to high elevation zones (moist zones), suggesting progressive adaptation of Datura innoxia with the natural vegetation in NW Pakistan. Similarly, the soil variable also corresponds with the trait's variation e.g., significant variations (P < 0.05) of soil organic matter, organic carbon, Nitrogen and Phosphorus was recorded. The trait-environment linkages were exposed by redundancy analysis (RDA) that was co-drive by topographic (elevation, r = -0.4897), edaphic (sand, r = -0.4565 and silt, r = 0.5855) and climatic factors. Nevertheless, the influences of climatic factors were stronger than soil variables that were strongly linked with elevation gradient. The study concludes that D. innoxia has adopted the prevailing environmental and climatic conditions, and further investigation is required to evaluate the effects of these factors on their phytochemical and medicinal value.

8.
Nat Plants ; 10(3): 494-511, 2024 03.
Article in English | MEDLINE | ID: mdl-38467800

ABSTRACT

Pressurized cells with strong walls make up the hydrostatic skeleton of plants. Assembly and expansion of such stressed walls depend on a family of secreted RAPID ALKALINIZATION FACTOR (RALF) peptides, which bind both a membrane receptor complex and wall-localized LEUCINE-RICH REPEAT EXTENSIN (LRXs) in a mutually exclusive way. Here we show that, in root hairs, the RALF22 peptide has a dual structural and signalling role in cell expansion. Together with LRX1, it directs the compaction of charged pectin polymers at the root hair tip into periodic circumferential rings. Free RALF22 induces the formation of a complex with LORELEI-LIKE-GPI-ANCHORED PROTEIN 1 and FERONIA, triggering adaptive cellular responses. These findings show how a peptide simultaneously functions as a structural component organizing cell wall architecture and as a feedback signalling molecule that regulates this process depending on its interaction partners. This mechanism may also underlie wall assembly and expansion in other plant cell types.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis Proteins/genetics , Arabidopsis Proteins/chemistry , Arabidopsis/metabolism , Peptides/metabolism , Plants/metabolism , Cell Wall/metabolism , Plant Roots/metabolism
9.
Front Nutr ; 11: 1276307, 2024.
Article in English | MEDLINE | ID: mdl-38450233

ABSTRACT

Dryopteris filix-mas (hereafter D. filix-mas), a wild leafy vegetable, has gained popularity among high mountain residents in the Hindukush-Himalaya region due to its exceptional nutritional profile, and their commercial cultivation also offers viable income alternatives. Nevertheless, besides phytochemicals with medicinal applications, ecological factors strongly affect their mineral contents and nutritional composition. Despite this, little has been known about how this wild fern, growing in heterogeneous ecological habitats with varying soil physiochemical properties and coexisting species, produces fronds with optimal mineral and nutritional properties. Given its nutritional and commercial significance, we investigated how geospatial, topographic, soil physiochemical characteristics and coexisting plants influence this widely consumed fern's mineral and nutrient content. We collected soil, unripe fern fronds, and associated vegetation from 27 D. filix-mas populations in Swat, NW Pakistan, and were analyzed conjointly with cluster analysis and ordination. We found that the fronds from sandy-loam soils at middle elevation zones exhibited higher nitrogen contents (9.17%), followed by crude fibers (8.62%) and fats (8.09%). In contrast, juvenile fronds from the lower and high elevation zones had lower moisture (1.26%) and ash (1.59%) contents, along with fewer micronutrients such as calcium (0.14-0.16%), magnesium (0.18-0.21%), potassium (0.72-0.81%), and zinc (12% mg/kg). Our findings indicated the fern preference for middle elevation zones with high organic matter and acidic to neutral soil (pH ≥ 6.99) for retaining higher nutritional contents. Key environmental factors emerged from RDA analysis, including elevation (r = -0.42), aspect (r = 0.52), P-3 (r = 0.38), K+ (r = 0.41), EC (r = 0.42), available water (r = -0.42), and field capacity (r = -0.36), significantly impacting fern frond's mineral accumulation and nutrient quality enhancement. Furthermore, coexisting plant species (r = 0.36) alongside D. filix-mas played a pivotal role in improving its mineral and nutritional quality. These findings shed light on the nutritional potential of D. filix-mas, which could help address malnutrition amidst future scarcity induced by changing climates. However, the prevalent environmental factors highlighted must be considered if the goal is to cultivate this fern on marginal lands for commercial exploitation with high mineral and nutrient yields in Hindukush-Himalaya.

11.
Sci Rep ; 14(1): 2764, 2024 02 02.
Article in English | MEDLINE | ID: mdl-38308017

ABSTRACT

Aquatic biota are threatened by climate warming as well as other anthropogenic stressors such as eutrophication by phosphates and nitrate. However, it remains unclear how nitrate exposure can alter the resilience of microalgae to climate warming, particularly heatwaves. To get a better understanding of these processes, we investigated the effect of elevated temperature and nitrate pollution on growth, metabolites (sugar and protein), oxidative damage (lipid peroxidation), and antioxidant accumulation (polyphenols, proline) in Chlamydomonas reinhardtii and Pseudokirchneriella subcapitata. The experiment involved a 3 × 3 factorial design, where microalgae were exposed to one of three nitrate levels (5, 50, or 200 mg L-1 NO3-l) at 20 °C for 2 weeks. Subsequently, two heatwave scenarios were imposed: a short and moderate heatwave at 24 °C for 2 weeks, and a long and intense heatwave with an additional 2 weeks at 26 °C. A positive synergistic effect of heatwaves and nitrate on growth and metabolites was observed, but this also led to increased oxidative stress. In the short and moderate heatwave, oxidative damage was controlled by increased antioxidant levels. The high growth, metabolites, and antioxidants combined with low oxidative stress during the short and moderate heatwaves in moderate nitrate (50 mg L-1) led to a sustainable increased food availability to grazers. On the other hand, long and intense heatwaves in high nitrate conditions caused unsustainable growth due to increased oxidative stress and relatively low antioxidant (proline) levels, increasing the risk for massive algal die-offs.


Subject(s)
Chlamydomonas reinhardtii , Microalgae , Antioxidants/metabolism , Nitrates/pharmacology , Microalgae/metabolism , Chlamydomonas reinhardtii/metabolism , Proline/pharmacology
12.
J Sci Food Agric ; 2024 Feb 07.
Article in English | MEDLINE | ID: mdl-38323721

ABSTRACT

BACKGROUND: Coffee farming constitutes a substantial economic resource, representing a source of income for several countries due to the high consumption of coffee worldwide. Precise management of coffee crops involves collecting crop attributes (characteristics of the soil and the plant), mapping, and applying inputs according to the plants' needs. This differentiated management is precision coffee growing and it stands out for its increased yield and sustainability. RESULTS: This research aimed to predict yield in coffee plantations by applying machine learning methodologies to soil and plant attributes. The data were obtained in a field of 54.6 ha during two consecutive seasons, applying varied fertilization rates in accordance with the recommendations of soil attribute maps. Leaf analysis maps also were monitored with the aim of establishing a correlation between input parameters and yield prediction. The machine-learning models obtained from these data predicted coffee yield efficiently. The best model demonstrated predictive fit results with a Pearson correlation of 0.86. Soil chemical attributes did not interfere with the prediction models, indicating that this analysis can be dispensed with when applying these models. CONCLUSION: These findings have important implications for optimizing coffee management and cultivation, providing valuable insights for producers and researchers interested in maximizing yield using precision agriculture. © 2024 Society of Chemical Industry.

13.
RSC Adv ; 14(9): 5754-5763, 2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38362085

ABSTRACT

In the current research, we produced green, cost-effective, eco-friendly silver nanoparticles using a single-step approach. Plants are considered highly desirable systems for nanoparticle synthesis because they possess a variety of secondary metabolites with significant reduction potential. In the current research, the dried leaf extract of Rubus fruticosus was utilized as a capping and reducing agent for the fabrication of silver nanoparticles, to prepare reliable biogenic silver nanoparticles and subsequently to investigate their potential against some common phytopathogens. The prepared silver nanoparticles were exploited to quantify the total flavonoid content (TFC), total phenolic content (TPC) and DPPH-based antioxidant activity. Different concentrations of aqueous extracts of plant leaves and silver nitrate (AgNO3) were reacted, and the color change of the reactant mixture confirmed the formation of Rubus fruticosus leaf-mediated silver nanoparticles (RFL-AgNPs). A series of characterization techniques such as UV-vis spectroscopy, transmission electron microscopy, energy dispersive X-ray analysis and X-ray diffraction revealed the successful synthesis of silver nanoparticles. The surface plasmon resonance peak appeared at 449 nm. XRD analysis demonstrated the crystalline nature, EDX confirmed the purity, and TEM demonstrated that the nanoparticles are mostly spherical in form. Furthermore, the biosynthesized nanoparticles were screened for in vitro antibacterial activity, antioxidant activity, and total phenolic and flavonoid content. The nanoparticles were used in different concentrations alone and in combination with plant extracts to inhibit Erwinia caratovora and Ralstonia solanacearum. In high-throughput assays used to inhibit these plant pathogens, the nanoparticles were highly toxic against bacterial pathogens. This study can be exploited for planta assays against phytopathogens utilizing the same formulations for nanoparticle synthesis and to develop potent antibacterial agents to combat plant diseases.

14.
Int J Phytoremediation ; 26(8): 1269-1279, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38318857

ABSTRACT

Soil salinity caused a widespread detrimental issue that hinders productivity in agriculture and ecological sustainability, while waste-derived soil amendments like biochar have drawn attention for their capacity to act as a mitigating agent, by enhancing the physical and chemical features of soil, and contributing to the recovery of agricultural waste resources. However, the information concerning biochar and salinity which affect the physicochemical characteristics of soils, crop physiology, and growth is limited. To investigate whether biochar mitigates the salinity stress on wheat crop seedlings, we grow them with salinity stress (120 mM), and biochar (20 tons ha-1), and its interactive effects. The soil properties of soil organic carbon (SOC), soil organic matter (SOM), dissolved organic carbon (DOC), and soil available phosphorus (SAP) decreased in the saline soil by 36.71%, 46.97%, 26.31%, and 15.00%, while biochar treatment increased SOC, DOC, and SAP contents by 7.42%, 31.57%, and 15.00%, respectively. On the other hand, dissolved organic nitrogen (DON) contents decreased in all the treatments compared to the control. The root growth traits, SPAD values, leaf nitrogen, photosynthetic parameters, antioxidant enzymes, and reactive oxygen species decreased in the saline treatment while increasing in the biochar and interactive treatment. Thus, these activities resulted in higher leaves and root biomass in the biochar treatment alone and interactive treatment of salinity and biochar. According to principal component analysis, redundancy analysis, and the mantel test, using biochar in conjunction with salinity treatment was found to be more effective than salinity treatment alone. The results of this study suggest that biochar can be used as a sustainable agricultural technique and a means of mitigation agent by lowering soil salinity while increasing the biomass of crops.


Biochar improves the physical and nutritional quality of soil and plant function.Salinity stress declined the physiological activities and biomass of the crop.Biochar mitigates the salinity stress in soil and enhances the plant functioning.Exposure to both treatments enhances the antioxidant enzyme activity and biomass.


Subject(s)
Agriculture , Biodegradation, Environmental , Charcoal , Salinity , Soil , Triticum , Soil/chemistry , Triticum/growth & development , Agriculture/methods , Phosphorus , Nitrogen/metabolism
15.
Plant Cell Rep ; 43(2): 38, 2024 Jan 11.
Article in English | MEDLINE | ID: mdl-38200224

ABSTRACT

KEY MESSAGE: A novel non-steady-state kinematic analysis shows differences in cell division and expansion determining a better recovery from a 3-day cold spell in emerged compared to non-emerged maize leaves. Zea mays is highly sensitive to chilling which frequently occurs during its seedling stage. Although the direct effect of chilling is well studied, the mechanisms determining the subsequent recovery are still unknown. Our goal is to determine the cellular basis of the leaf growth response to chilling and during recovery of leaves exposed before or after their emergence. We first studied the effect of a 3-day cold spell on leaf growth at the plant level. Then, we performed a kinematic analysis to analyse the dynamics of cell division and elongation during recovery of the 4th leaf after exposure to cold before or after emergence. Our results demonstrated cold more strongly reduced the final length of non-emerged than emerged leaves (- 13 vs. - 18%). This was not related to growth differences during cold, but a faster and more complete recovery of the growth of emerged leaves. This difference was due to a higher cell division rate on the 1st and a higher cell elongation rate on the 2nd day of recovery, respectively. The dynamics of cell division and expansion during recovery determines developmental stage-specific differences in cold tolerance of maize leaves.


Subject(s)
Plant Leaves , Zea mays , Cell Division , Cell Proliferation , Cell Cycle
16.
Plant Physiol Biochem ; 207: 108327, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38271860

ABSTRACT

Triclosan has been extensively used as a preservative in cosmetics and personal care products. However, its accumulation represents a real environmental threat. Thus, its phytotoxic impact needs more consideration. Our study was conducted to highlight the phytotoxic effect of triclosan on the growth, ROS homeostasis, and detoxification metabolism of two different plant species i.e., legumes (Glycine max) and grass (Avena sativa). Moreover, we investigated the potentiality of plant growth-promoting bacteria (ST-PGPB) in mitigating the phytotoxic effect of triclosan. Triclosan induced biomass (fresh and dry weights) reduction in both plants, but to a higher extent in oats. This decline was associated with a noticeable increment in the oxidative damage (e.g., MDA and H2O2) and detoxification metabolites such as metallothionein (MTC), phytochelatins (PCs), and glutathione-S-transferase (GST). This elevation was associated with a remarkable reduction in both enzymatic and non-enzymatic antioxidants. On the other hand, the bioactive strain of ST-PGPB, Salinicoccus sp. JzA1 significantly alleviated the harmful effect of triclosan on both soybean and oat plants by enhancing their biomass, photosynthesis, as well as levels of minerals (K, Ca, P, Mn, and Zn). In parallel, a striking quenching in oxidative damage and an obvious improvement in non-enzymatic (polyphenols, tocopherols, flavonoids) and enzymatic antioxidants were observed. Furthermore, Salinicoccus sp. JzA1 augmented the detoxification metabolism by enhancing the levels of phytochelatins, metallothionein, and glutathione-S-transferase (GST) activity in a species-specific manner which is more apparent in soybean rather than in oat plants. To this end, stress mitigating impact of Salinicoccus sp. JzA1 provides a basis to improve the resilience of crop species under cosmetics and personal care products toxicity.


Subject(s)
Cosmetics , Triclosan , Avena/metabolism , Triclosan/metabolism , Triclosan/toxicity , Glycine max , Reactive Oxygen Species/metabolism , Phytochelatins/metabolism , Hydrogen Peroxide/metabolism , Antioxidants/metabolism , Oxidative Stress , Plants/metabolism , Homeostasis , Cosmetics/metabolism , Cosmetics/pharmacology , Metallothionein/metabolism , Transferases/metabolism
17.
Int J Phytoremediation ; 26(6): 975-992, 2024.
Article in English | MEDLINE | ID: mdl-37968930

ABSTRACT

The current study aims to use a facile and novel method to remove Congo red (CR) and Methyl Orange (MO) dyes from contaminated water with Maize offal biomass (MOB) and its nanocomposite with magnetic nanoparticles (MOB/MNPs). The MOB and MOB/MNPs were characterized with Fourier-transform infrared (FTIR), scanning electron microscopy (SEM), BET, XRD and point of zero charge (pHPZC). The influence of initial CR and MO levels (20-320 mg/L), adsorbent dosage (1-3 g/L), pH (3-9), co-exiting ions, temperature (25-45 °C) and time (15-180 min) was estimated. The findings demonstrated that MOB/MNPs exhibited excellent adsorption of 114.75 and 29.0 mg/g for CR and MO dyes, respectively while MOB exhibited 81.35 and 23.02 mg/g adsorption for CR and MO dyes, respectively at optimum pH-5, and dose 2 g/L. Initially, there was rapid dye removal which slowed down until equilibrium was reached. The interfering/competing ions in contaminated water and elevated temperature favored the dyes sequestration. The MOB/MNPs exhibited tremendous reusability and stability. The dyes adsorption was spontaneous, and exothermic with enhanced randomness. The adsorption effects were well explained with Freundlich model, pseudo second order and Elovich models. It is concluded that MOB/MNPs showed excellent, eco-friendly, and cost-effective potential to decontaminate the water.


Nanocomposite of Maize offal biomass demonstrated higher dyes removal.FTIR, SEM, BET, XRD and pHPZC provided vital evidence for dyes adsorption.MOB/MNPs displayed excellent stability and reusability for dyes adsorption.Groundwater samples exposed a higher dyes removal.Results were validated with equilibrium and kinetic adsorption models.


Subject(s)
Azo Compounds , Nanocomposites , Water Pollutants, Chemical , Congo Red , Coloring Agents/chemistry , Zea mays , Biomass , Biodegradation, Environmental , Adsorption , Ions , Water , Nanocomposites/chemistry , Magnetic Phenomena , Kinetics , Water Pollutants, Chemical/chemistry , Hydrogen-Ion Concentration
18.
Regul Toxicol Pharmacol ; 146: 105536, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38056705

ABSTRACT

This study aimed to isolate and characterize moringa leaf protein (MLP) via HPLC and evaluate its consumption's effects through rat model. Four groups of Albino Wistar rats (n = 25 each) along with a control group (n = 25) were acclimatized. The isolated MLP was added to the basal diet (casein; control) in various percentages (25, 50, 75, 100%) for a 21-day experimental period. On three intervals (1st, 11th, 21st days), blood samples were collected and subjected for hematological and biochemical examination (Renal Function Test (RFT), Liver Function Test (LFT)). MLP contained a variety of essential and non-essential amino acids in substantial amounts. The Protein Efficiency Ratio (PER) of 50% MLP-treated group was the highest (1.72) among MLP treatments. Increases in feed intake and weight were observed in treated rats compared to the control. The hematological profile of the rats revealed increases in Hemoglobin (Hb) (7.9-14.0%), White Blood Cell (WBC) (35.9-51.5%), Red Blood Cell (RBC) (17.1-22.2%), Hematocrit (HCT) (13.1-22.9%), and platelets levels (36.5-40.6%) from day 1. Protein isolates decreased liver parameters but resulted in non-significant changes in liver and kidney functions in rats. Further investigation is needed to determine the safe daily intake of MLP.


Subject(s)
Moringa oleifera , Plant Proteins , Rats , Animals , Moringa oleifera/chemistry , Meat Proteins/analysis , Plant Extracts/pharmacology , Rats, Wistar , Meat , Plant Leaves/chemistry
19.
J Hazard Mater ; 464: 132956, 2024 02 15.
Article in English | MEDLINE | ID: mdl-37976853

ABSTRACT

Global soil acidification is increasing, enlarging aluminum (Al) availability in soils, leading to reductions in plant growth. This study investigates the effect of Al stress on the leaf growth zones of Rye (Secale cereale, cv Beira). Kinematic analysis showed that the effect of Al on leaf growth rates was mainly due to a reduced cell production rate in the meristem. Transcriptomic analysis identified 2272 significantly (log2fold > |0.5| FDR < 0.05) differentially expressed genes (DEGs) for Al stress. There was a downregulation in several DEGs associated with photosynthetic processes and an upregulation in genes for heat/light response, and H2O2 production in all leaf zones. DEGs associated with heavy metals and malate transport were increased, particularly, in the meristem. To determine the putative function of these processes in Al tolerance, we performed biochemical analyses comparing the tolerant Beira with an Al sensitive variant RioDeva. Beira showed improved sugar metabolism and redox homeostasis, specifically in the meristem compared to RioDeva. Similarly, a significant increase in malate and citrate production, which are known to aid in Al detoxification in plants, was found in Beira. This suggests that Al tolerance in Rye is linked to its ability for Al exclusion from the leaf meristem.


Subject(s)
Aluminum , Secale , Secale/genetics , Secale/metabolism , Aluminum/toxicity , Malates/metabolism , Malates/pharmacology , Hydrogen Peroxide/metabolism , Oxidation-Reduction , Plant Leaves/metabolism , Sugars
20.
PeerJ ; 11: e16369, 2023.
Article in English | MEDLINE | ID: mdl-38047032

ABSTRACT

The tolerance of Chenopodium ambrosioides to some heavy metals under in vitro environment was thoroughly investigated. A micropropagation protocol was developed to facilitate the mass production of plants and to identify metals-tolerant species for potential use in the restoration of polluted areas. Nodal explants exhibited callus formation when treated with N6-benzyladenin (BA) (1.5 mg/l) and a combination of BA/α-naphthalene acetic acid (NAA) at concentrations of 1.5/1.0 mg/l on the Murashige and Skoog (MS) medium. The optimal shoot formation was achieved with the callus grown on a medium enriched with 1.5/1.0 mg/l BA/NAA, resulting in an impressive number (21.89) and length (11.79 cm) of shoots. The in vitro shoots were rooted using NAA (1.0 and 1.5 mg/l) and were acclimatized in pots with 71% survival rate. After standardizing micropropagation protocol, the in vitro shoots were subjected to various doses of lead nitrate (Pb(NO3)2 and cadmium chloride (CdCl2). Pb(NO3)2 and CdCl2 in the media let to a reduction in shoot multiplication, decreasing from 18.73 in the control group to 11.31 for Pb(NO3)2 and 13.89 for CdCl2 containing medium. However, Pb(NO3)2 and CdCl2 promoted shoot length from 5.61 in the control to 9.86 on Pb(NO3)2 and 12.51 on CdCl2 containing medium. In the case of Pb(NO3)2 treated shoots, the growth tolerance index (GTI) ranged from117.64% to 194.11%, whereas for CdCl2 treated shoots, the GTI ranged from 188.23% to 264.70%. Shoots treated with high level of Pb(NO3)2induced reddish-purple shoots, while a low level of Pb(NO3)2 induced shoots displayed both green and reddish-purple colors in the same explants. In CdCl2 treated culture, the toxic effects were narrow leaf lamina, elongated petiole and a dark reddish purple coloration. These findings highlight the remarkable potential of C. ambrosioides to maintain growth and organogenesis even in the presence Pb(NO3)2 and CdCl2 on the MS medium, indicating a high degree of metal tolerance.


Subject(s)
Cadmium , Chenopodium ambrosioides , Cadmium/toxicity , Lead/toxicity
SELECTION OF CITATIONS
SEARCH DETAIL
...